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Abstract— Statistical iterative reconstruction (SIR) ap-
proaches have shown great potential in x-ray computed tomo-
graphic (CT) reconstruction in the case of low-dose protocol.
For yielding high quality image, an edge-preserving regular-
ization should be incorporated into the objective function of
SIR approaches. A typical example is the Huber regularization
with an edge-preserving non-quadratic potential function which
increases less rapidly than the quadratic potential function for
sufficiently large arguments. However, a major drawback of the
Huber regularization is the determining the threshold, which
precludes its extensive applications. In this paper, we investigate
both global- and local- edge-detecting operators for threshold
choices of Huber regularization and apply them to SIR CT
image reconstruction with low-dose scan protocol. Experiments
were performed on XCAT phantom by using a CT simulator
to obtain the low-dose projection data.

I. INTRODUCTION

Due to the extensive applications of X-ray computed
tomography (CT) in clinic, the associative radiation exposure
from CT scans has raised major concerns to patients [1]. Cut-
ting down the radiation exposure becomes one of the major
efforts in the CT fields [2]. As a simple and cost-effective
way, lowering the X-ray tube current and/or shortening the
exposure time (mAs) in CT scan are easily realized to reduce
radiation exposure. However, the associative image would
suffer from serious noise and artifacts if without adequate
noise treatments during image reconstruction. To solve above
problem, statistical iterative reconstruction (SIR) approaches
[3] as comparison with the filtered back-projection (FBP)
approach, by incorporating the statistical properties of the
measurement, have shown great potential to reduce the noise
induced artifacts [3-5].

Under the assumption of Poisson statistic of CT pro-
jection measurement, the SIR approaches can be derived
with the maximum a posteriori (MAP) estimator as giv-
en the measurement. The associative objective function of
SIR usually consists two terms, i.e., ‘data-fidelity term’
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and ‘regularization term’. The data-fidelity term models the
statistical measurement and the regularization term penalizes
the solution. Usually, the regularization term is designed as a
shift-invariant function that penalizes the disparity between
the pixel intensities in a local neighborhood. These regular-
izations/priors through smoothing both noise and edge details
equally often tend to produce unfavorable over-smoothing
effects [4]. Different to the smoothing regularizations, many
edge-preserving regularizations/priors were proposed in the
literature [6,7]. A typical example is the Huber regularization
[8], which replaces the quadratic penalty function with a non-
quadratic penalty function that increases less rapidly than the
quadratic penalty function for sufficiently large arguments.

One major drawback of the Huber function is the choice of
the threshold. Many literatures have discussed it [9-11]. For
example, Rousseeuw exploited the robust statistics approach
to detect the outliers, and then presented a global edge-
detecting operator for threshold choice [9]. Furthermore,
using local statistical properties of the image, Black and
Sapiro presented a local edge-detecting operator for threshold
choice [10]. He et al defined a proportion variable, using
discrete smoothing norm by Laplacian kernel, to restrict
the threshold [11]. In summarizes, these techniques are all
with the assumption that edges of the desired-image are not
changing in generating the observation of image.

Due to the well expression of Huber regularization, it has
been widely used in CT image reconstruction [12]. In this
paper, we aim to investigate both global- and local- edge-
detecting operators for threshold choices of Huber regulariza-
tion [9,10] and apply them to SIR CT image reconstruction
with low-dose scan protocol.

II. MATERIALS AND METHODS

A. Penalized Weighted Least-Squares Image Reconstruction

Mathematically, the X-ray CT measurement can be ap-
proximately expressed as a discrete linear system:

y = Hµ (1)

where µ denotes the vector of attenuation coefficients,
i.e., µ = (µ1, µ2, ..., µN )T and y represents the obtained
sinogram data (projections after system calibration and log-
arithm transformation), i.e., y = (y1, y2, ..., yM )T , where
‘T ’ denotes the matrix transpose. The operator H represents
the system or projection matrix with the size of M × N .
The element of Hij denotes the length of intersection of
projection ray i with pixel j. In the implementation, the
associated element was pre-calculated by a fast ray-tracing
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technique and stored as a file. The goal for CT image
reconstruction is to estimate the attenuation coefficients µ
from the measurement y.

According to the measurement model (1) and the MAP
estimation criterion, the mathematical formula for PWLS
image reconstruction with a regularization term R(µ) can
be expressed as follows:

µ∗ = argmin
µ≥0

{
(y −Hµ)′Σ−1(y −Hµ) + βR(µ)

}
(2)

where Σ is a diagonal matrix with the ith element of σ2
i

which is the variance of sinogram data y. β is a hyper-
parameter for controlling the strength of regularization

For determining the parameter σ2
i in equation (2), several

methods can be used [4,13]. In this study, the variance of σ2
i

was determined by the following mean-variance relationship
proposed by Ma et al [13] recently:

σ2
i =

1

I0
exp(p̄i)

(
1 +

1

I0
exp(p̄i)(σ

2
e − 1.25)

)
(3)

where I0 denotes the incident X-ray intensity, p̄i is the mean
of the sinogram data at bin i and σ2

e is the background
electronic noise variance.

B. Huber Regularization
Traditionally, R(µ) in (2) is designed by a weighted sum

of potential function about the disparity of neighboring pixels
in image domain [4], which can be described as follows:

R(µ) =
∑
j

R(µj) =
∑
j

∑
k∈Sj

w(k, j)φ(µj − µk) (4)

where index j runs over all image elements in the image
domain. Sj represents a local neighborhood of the jth image
pixel in two dimensions. The weight w(k, j) is positive
and symmetric, i.e., w(k, j) ≥ 0 and w(k, j) = w(j, k),
which are usually designed to be an inverse proportion of
the distance between pixels k and j in Sj . The φ denotes a
convex and positive potential function satisfying φ(0) = 0.

There are many different choices of φ(t). In this study, we
investigate the Huber function φHuber defined as follows:

φHuber(t) =

{
t2/2, |t| ≤ δ
δ|t| − δ2/2, |t| > δ

(5)

The Huber potential function penalizes the disparity be-
tween neighboring pixels. As illustrated in Fig. 1, for |t| < δ,
the quadratic term produces a least-square fit for the image,
and if |t| > δ, a linearly varying cost is used which preserves
the discontinuities of the image such as the edges.

In summary, the objective function of PWLS with the
present Huber regularization (i.e., PWLS-Huber) for CT
image reconstruction can be rewritten as:

µ∗ = argmin
µ≥0

{
(y −Hµ)′Σ−1(y −Hµ) + βRHuber(µ)

}
(6)

where the Huber regularization is defined as follows

RHuber(µ) =
∑
j

∑
k∈Sj

w(k, j)φHuber(µj − µk). (7)

In the implementation, a modified conjugate gradient (CG)
method was adopted to optimize the objective function (6).

Fig. 1. An illustration of Huber potential function.

C. Huber Threshold Choice Strategies

A major advantage of the Huber model is its ability to
switch the penalty on discontinuities according to the dis-
parity of intensities between current pixel and its neighbors.
This ability is produced by the Huber threshold δ, which
plays a crucial role in determining the behavior of the Huber
regularization. In this study, we investigate both global and
local edge detecting operators for threshold choices of Huber
regularization described as follows:

1) Global edge detecting method: According to the robust
statistics, pixels with large gradient magnitude are viewed as
outliers. The gradient at which a point is treated as an outlier
is dependent on the parameter δ. And then the main idea is
that δ should characterize the variance of the image [9]. So
the robust measure of the data variability δ can be determined
automatically in the following way:

δG = 1.4826MAD(∇I)

= 1.4826medianI(∥∇I − medianI(∥∇I∥)∥) (8)

where “MAD” represents the median absolute deviation and
the constant is originated from the fact that the MAD of a
zero-mean normal distribution with unit variance is 0.6745 =
1/1.4826.

2) Local edge detecting method: This part address how
this parameter δ can be determined automatically from the
image data in such a way that edges correspond to statistical
outliers with respect to local image gradients [10]. The main
idea is that δ should characterize the variance of the data
within a region. δ varies across the image and hence, edge
information is dependent on local statistical properties of the
image. The local image detecting method shares the same
robust statistical theory with the global one. In particular,
we consider computing a local scale δL(p, q), which is a
function of spatial position, in n× n pixel patches at every
location in the image:

δL(p, q) = 1.4826MAD−n
2 <i,j<n

2
(∇Ip+i,q+j). (9)

III. EXPERIMENT AND RESULTS

The XCAT phantom was used for experimental data acqui-
sition. The phantom was modeled with non-uniform rational
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B-Spline surface based on the collected data. Accompanied
with the XCAT phantom, a CT simulator was also provided.
The projection data of phantom was simulated with a CT
simulator at two mAs levels, i.e, 23.2 mAs and 580 mAs.
For each mAs level, the tube voltage was set to be 120 kVp,
the time per gantry rotation is 1.0 s, the slice thickness is 3
mm. The system geometry represented a system with 1,800
mm source-to-detector distance, 1510.4 mm center-to-source
distance, and 0.8448 mm detector pixels (672 radial bins).
Reconstructions were onto 0.86 mm square pixels with image
size of 512× 512.

The following metrics were utilized to evaluate the noise
reduction of the image reconstructed from the low-dose
projection data: (1) local signal to noise ratio (lSNR); and
(2) relative root mean square error (rRMSE):

lSNR =

1
Q

Q∑
m=1

µm√
1
Q

Q∑
m=1

∣∣∣∣µm − 1
Q

Q∑
m=1

µm

∣∣∣∣2
(10)

rRMSE =

√√√√√√√√
Q∑

m=1
|µm − µG,m|2

Q∑
m=1

|µG,m|2
(11)

where µ represents the reconstructed image from the low-
dose data, and µG denotes a golden standard image. m is
the pixel index in the region of interest (ROI), and Q is
the number of pixels in the ROI. In this study, the golden
standard image was the image reconstructed by the FBP
method with hanning filter from the projection data acquired
with 580 mAs and 120 kVp.

Fig. 2. XCAT phantom images reconstructed from the simulated projection
data. (a) image reconstructed by the FBP method with optimal hanning filter
from the projection data acquired with 580 mAs; (b) image reconstructed
by the FBP method with ramp filter from the projection data acquired with
23.2 mAs; (c) image reconstructed by the PWLS-Huber algorithm with
the global edge detecting method from the projection data acquired with
23.2 mAs (β = 1.0× 103 ); (d) image reconstructed by the PWLS-Huber
algorithm with the local edge detecting method from the projection data
acquired with 23.2 mAs (n × n =9 × 9, β = 1.0 × 103). The display
option is [0 0.03] mm−1.

Fig. 2 shows the XCAT phantom images reconstructed
from the simulated projection data. Fig. 2(a) is the image
reconstructed by the FBP method with optimal hanning filter
from the projection data acquired with 580 mAs. Fig. 2(b) is
the image reconstructed by the FBP method with ramp filter
from the projection data acquired with 23.2 mAs. Serious
noise-induced streak artifacts can be observed compared with
Fig. 2(a). Figs. 2(c)-(d) are the images reconstructed by
the PWLS-Huber algorithm with the global edge detecting
method and the local edge detecting method, respectively. It
can be seen, with the two Huber threshold choice strategies,
similar results were obtained with the noise and artifacts
mostly suppressed. To further quantitatively evaluate the two
Huber threshold choice strategies, the lSNR and rRMSE of
three different ROIs, as indicated by the squares in Fig. 2(a),
were measured as listed in Table 1. From the measuring
results in Table 1, we can see the PWLS-Huber method with
global and local edge detecting methods achieved much more
gains than FBP, and the local edge detecting method per-
forms better than the global edge detecting method in noise
suppression in homogeneous regions. But from the profiles in
Fig. 3, we can see that with the local edge detecting method,
the reconstruction sacrifices more resolution than the global
edge detecting method.

TABLE I
LSNR AND RRMSE MEASURES ON THE ROIS AS INDICATED BY THE

SQUARES IN FIG. 2(A).

ROI A ROI B ROI C
Methods lSNR rRMSE lSNR rRMSE lSNR rRMSE

FBP 14.78 0.0674 12.90 0.0803 3.59 0.2761
PWLS-Huber(Global) 64.02 0.0187 66.78 0.0217 17.59 0.0683
PWLS-Huber(Local) 64.64 0.0186 67.48 0.0216 17.64 0.0680

Fig. 3. Vertical profiles located at the pixel position x = 408 and y from
330 to 360 as indicated by the red line in Fig. 2(a).

For the global edge detecting method, the edge threshold δ
in the Huber function is fixed once it has been calculated. But
for the local edge detecting method, the parameter patch size
(n×n) can be varied. Fig. 4 shows the results of estimating
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δL(p, q) in different pixel patches. Bright areas have higher
values of δL(p, q) and correspond to more textured image
regions. Fig. 5 shows the effects of the spatially varying
δL(p, q). Moreover, Table 2 lists the measuring results of
Figs. 5 in terms of lSNR and rRMSE. We can see that with
the patch size changing from 5×5 to 17×17 the reconstructed
image changed little. With patch size set to be 9×9, we may
get a relative high-quality image.

Fig. 4. Local estimate of scale δL(p, q). Bright areas correspond to larger
values of δL(p, q). (a) n× n = 5 ×5; (b) n× n = 9 × 9; (c) n× n = 13
× 13; (d) n× n = 17 × 17.

TABLE II
LSNR AND RRMSE MEASURES ON THE ROIS (INDICATED BY THE

SQUARES IN FIG. 2(A).) IN FIG. 5 WITH DIFFERENT LOCAL PATCH SIZE.

ROI A ROI B ROI C
Patch size lSNR rRMSE lSNR rRMSE lSNR rRMSE
5× 5 64.90 0.0185 67.44 0.0216 17.61 0.0679
9× 9 64.64 0.0186 67.48 0.0216 17.64 0.0680
13× 13 64.32 0.0186 67.39 0.0217 17.63 0.0680
17× 17 64.20 0.0186 67.31 0.0217 17.61 0.0681

IV. DISCUSSION AND CONCLUSION

In this paper, we investigate two state-of-the-art Huber
threshold choice methods for CT statistical iterative recon-
struction with low-dose scan protocol. Specifically, the global
edge detecting method and the local edge detecting method
were studied with the qualitative and quantitative measure.
From the experimental result we can see that local edge
detecting method performs more adaptively than the global
edge detecting method as it introduced the local features of
the desired image. But on the other hand, the local edge
detecting method may sacrifice a little more image resolution
than the global edge detecting method, which can be seen
from smoothed edges.

One major limit of our study is the lack of clinic CT data
validation, thus further study should be conducted on real
patient data. Regarding to the other hyper-parameter β, it
should also have influence on the quality of the final image.
In this study, we just fixed it to only study the performance

Fig. 5. Images reconstructed by the PWLS-Huber algorithm with the local
edge detecting method of different patch size. (a) n×n = 5 ×5; (b) n×n
= 9 × 9; (c) n× n = 13 × 13; (d) n× n = 17 × 17. The display option
is [0 0.03] mm−1.

of different choice of the threshold δ, more quantitative
experiments with considering both the two parameters should
be performed.
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