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Multifractal Analysis of Microvasculature
in Health and Disease
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Abstract—A growing body of evidence suggests that there is
a strong association between neurodegenerative diseases such
as Alzheimer’s Diseases and the abnormality of the cerebral
vasculature, in particular the microvessels/capillaries that are
responsible for the exchange of nutrients across the blood-
brain barrier [1]. Many microvessels are described as being
kinked or distorted [2], implying that they are modified by
some destructive process. Imaging devices such as microCT can
achieve resolutions on the order of several ym, allowing imaging
the three dimensional (3D) microvasculature down to the
capillary level. However, the main weakness of using microCT
for vascular research is considered to be the lack of software for
3D quantification of microvasculature and microvascular image
databases for developing and testing algorithms.

In this paper we describe a multifractal analysis method for
the microvasculature automatically segmented from microCT
images of the mouse brain. Due to the lack of a benchmark
microCT image database, the method has been tested using a
surrogate database - a publicly available retinal vessel database.
The results are preliminary indication of the multifractal
properties of mouse brain vasculature. A potential solution
to automated classification of healthy and disease brains are
discussed.

Index Terms—multifractals, sandbox method, retinal analysis,
microvasculature, microCT

I. INTRODUCTION

RACTALS can be described as objects which contain

regions that are in a way similar to the object as a whole.
They are found in many natural scenarios, from financial
time series to quantum mechanics, and in particular in many
areas of human physiology [3], [4]. Each fractal has particular
non-integer dimension that represents how objects fill in the
space. A generalisation of this dimension is the theory of
multifractal systems [5], in which objects exhibit varying
fractal dimensions that form a continuous fractal spectrum.

It has previously been found that the structure of blood
vessels in the human retina displays these fractal properties
[6], [71, [8], [9]. Using this information, it can be shown
that different levels of pathological deterioration affect the
multifractal spectrum, and thus it can be used as a property
with which to classify images [6], [7], [8].

This paper describes a multifractal microvascular anal-
ysis method, which is part of the ongoing research that
looks into automated segmentation and analysis of the three-
dimensional (3D) vasculature from images of the mouse
brain obtained through the application of microCT and resin
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casting. The method developed is tested on automatically
segmented retinal vasculatures from the STARE retinal vessel
database, which contains information on whether the patient
suffers from pathological degeneration [10]. The retinal ves-
sel database is used in this work as a surrogate, as presently
no publicly available database of microvasculature exists.
The automated retinal segmentation method is described in
section II-B.

II. THEORY AND DESIGN

A. Multifractal Spectrum Analysis

When assessing a particular signal, common points of
interest are the presence of singularities, where the signal
is irregular or discontinuous at a point. One characteristic
of a singularity’s strength is the Holder exponent. For a
distribution f, if the following condition exists

|f(X) *P,,I(X7X0)| S C’|X7X0‘h

for some polynomial P,, with degree n < h, then the
supremum of all h € (n,n + 1) where it holds is called
the Holder exponent h(xg) of singularity xo. The exponent
here represents a local analysis of regularity in the signal.
Calculating this singularity spectrum involves finding the set
of all points with the same Holder exponents, S(h), within
the signal. The spectrum, D(h), is a function of S(h).

A common method for calculating fractal dimensions is the
box counting method [3]. This is implemented by placing a
grid of boxes with decreasing dimension, €, over the whole
signal and counting the number of boxes, N(g), containing
any part of the structure being analysed. This number is
expected to scale with the box dimension, since N (&) ~ e D,
where D is the fractal dimension of the signal, allowing
the dimension to be calculated as the gradient of a linear
regression plot fit to log(1/¢e) against log(N (¢)).

This method, however, is not suited to calculating multi-
fractals, so a different approach is used, utilising the box
dimension’s relation with the fractal dimension [5]. This
method involves placing boxes at random points on the
structure and increasing the box dimension. The results are
then compared at each size with the respective signal found
at other locations. In the case of 2-dimensional images,
the signal becomes a structure, with mass Mj: the image
dimension is given by L. For some continuous infinite set of
arbitrary exponents, (), the generalized fractal dimension D,
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is defined as follows:

i\]: Mz Q i (Q—1)Dq
Moy L ’

i=1

where M; is mass of the structure contained in the i*" box
of dimension [/, and NV is the maximum possible number of
boxes. Here @ is used to distort the structure, allowing the
focused analysis on different fractal properties [5].

Adapting this equivalence to a discrete image involves tak-
ing an appropriate finite set of exponents and approximating
the signal on a finite number of boxes. For some Ny finite
number of boxes with increasing dimension r, the average
spatial quantity for a box at a distortion exponent is:

my(r) = Al,oiZi (M]\ZX)Y_I]

M; (r) represents the mass of structure contained in the box of
dimension r in the i*" position. Using the above equivalence
relation, D, can be approximated at () = g using my:

1 log m(r)
D q
a & q—1 <logr—1ogL

This allows the dimension for each exponent to be calculated
as the gradient of a linear regression fit of the function
log(mq(r))/(q — 1) against log(r/L), Vr([5].

The spectrum of D, against ¢ is a representation of a
continuous monotonically decreasing function, that should
yield a linear plot for monofractals. Using D,, the local
Holder exponent, «, and its corresponding dimension spectra
D(«) can be found. This is a commonly used spectrum in
literature, [4], [6], [8], [5], [11], and is equivalent to the
notation f(«). First, define

7(q) = (¢ = 1) Dy,
~ d7(9)
a(q) = a4
and apply the Legendre transform, which defines the rela-
tionship between 7(¢) and D(«):

D(a) = qa(q) — 7(q)

In theory, an infinite number of exponents ¢ should lead to
Qmax and aupiy, the limits of « that form the support of D(«)
[12]. The spectrum of a multifractal should peak such that
max, D = D(ay), a9 = a(g = 0). This is representative of
the monofractal dimension [3].

Figure 1 shows an example of the boxes used to count the
2D signal at three random points. There is also an example
of the 7 function for the counts, plotted against the exponents
Q. Note that the largest box for a particular location does not
exceed the boundaries of the images, so as not to distort the
results. Where there is no count for a certain dimension, 7,
for that location the image is not included in the calculation
(7). This does not exempt it from the average at lower
box dimensions.

Figure 1. Sandbox counting for multifractal analysis at 3 separate locations
on the vessel structure of im0162 and average 7(q)/q plot

B. Segmentation Algorithm

To prepare images for fractal analysis, vessels must first be
identified and presented as a binary representation. Previous
work uses manual segmentations but this work uses an
automated detection algorithm to obtain vessels. Existing
methods were reviewed [13], [14], [15], that use a variety
of approaches to segmentation, however for retinal images,
many did not identify areas of bright diabetic retinopathic
(DR) lesions that are present in many of the pathological
images in our dataset. The need to remove these lesions
is necessary to get a good approximation of the fractal
dimensions of vessels, and with many current segmentation
methods it is difficult to distinguish the tear-like edges from
vessel structures.

The two major steps of the segmentation framework are
detection of vessel-like objects, and background profile gen-
eration [16]. The former applies thresholding to the numerical
divergence at each pixel in the image. Following this a linear
morphological operator is applied about several rotations
to isolate linear structures. To create an initial background
profile, all pixels within a small deviation of the image
median intensity are isolated. This removes vascular structure
and DR lesion alike, allowing a background for these regions
to be interpolated using true background pixels. Identified
vessel-like structures from the first step are compared with
their corresponding background profile, and if their original
intensity is significantly lower than the approximate back-
ground of the same region, this structure is considered to be a
true vessel. All other structures are discarded from the mask,
including areas of high colour intensity, and the remaining
structure is used as the binary vessel mask.

To increase contrast between vessels, the green channel of
the retinal images was used, as red vessels show up very dark
in the grey-scale image. In the case of the mouse brain image
where bright lesions are not present, the background profiling
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Pathological Healthy

Patient Auto Stosic Patient Auto Stosic
im0001 | 1.5472 | 1.5840 || im0077 | 1.6490 | 1.6670
im0002 | 1.4415 | 1.5740 im0081 | 1.6028 | 1.6590
im0003 | 1.5312 | 1.5950 || im0082 | 1.6173 | 1.6680
im0004 | 1.3919 | 1.5730 im0162 | 1.6371 | 1.6790
im0005 | 1.6391 1.5730 im0163 | 1.6264 | 1.7140
im0044 | 1.6002 | 1.6800 im0235 | 1.6251 | 1.6850
im0139 | 1.5838 | 1.6660 || im0236 | 1.6166 | 1.6830
im0291 1.5509 | 1.6030 im0239 | 1.5967 | 1.6580
im0319 | 1.3630 | 1.5540 || im0240 | 1.5514 | 1.6560
im0324 | 1.5360 | 1.6440 im0255 | 1.5986 | 1.6560

Mean 1.5185 | 1.6046 Mean 1.6121 | 1.6725

Table 1

CAPACITY DIMENSION, D(ag), OF STARE DATABASE IMAGES USING
THE SANDBOX COUNTING FOR CALCULATING MULTIFRACTAL SPECTRA,
INCLUDING THE RESULTS FROM STOSIC AND STOSIC ON MANUAL
SEGMENTATION USING THE SANDBOX METHOD

was obsolete and not included as a step in the segmentation
process. To conform with the properties of grey-scale retinal
images, the mouse brain image was inverted into negative,
so that vasculature is a dark mass.

Accuracy, true positive rate and false positive rate when
compared to the ground truth are presented below. Sensitivity
is equivalent to the rate of true positives and specificity
is equivalent to 1 minus the rate of false positives. This
compares favourably with other unsupervised segmentation
methods.

Accuracy
0.9496

Sensitivity
0.8050

Specificity
0.9686

ITI. RESULTS

After obtaining segmentations of the vessels from retinal
images and the microvasculature, the sandbox dimension
counting method was applied to both datasets, to calculate
the multifractal spectra of all images. In the case of retinal
vessels, the binary masks were padded with zeros in such a
way that it would form an N-by-N square image, where N
is the length of the largest dimension of the original image.
This was for consistency in computation due to the scaling
of square boxes.

A. Parameters

For this method, the set of exponents, ¢, for which to
estimate the continuous set of exponents, (), was set as
[-10,10] C Z. For ¢ = 1, D, is undefined and so
a finite difference estimate was used by taking D,—; =~
(Dg=1—¢ + Dg=14¢) /2, for e = 0.001.

The number of boxes used was Ny = 1000, width
increasing dimension at a ratio of %, centred at random
points on the vessel structure. This process was repeated
100 times (for different sets of 1000 random points) and
the result averaged. The parameters match those used in the
implementation by Sto$i¢ and StoSi¢ [8].

Pathological Healthy
17 1.7 T
165 1 165l o ==
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15 15
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Figure 2. Boxplot illustrating the data in Table I. This shows both the
distinct difference between dimensions of pathological and healthy retina
as well as highlighting the effects of using an automated approach to
segmentation

B. Multifractal Spectra

Numerical results from the application on the retinal
vasculature shows a distinct difference in dimension between
the healthy and pathological patients. Figure 3 shows that
both datasets exhibit similar shape, however the pathological
plot is shifted with lower values for all a(g) and D(«),
when compared with the spectrum of healthy patients. This
matches the results found by Stsi¢ and Stosi¢ in the analysis
of manual segmentations of the same dataset [8] as seen in
Figure 2. Minor difference between the two sets of results can
be put down to both the random element of the method, and
due to detection errors in the segmentation framework. In
general, there is good grounds for automated classification
and registration using the results presented here, as the
distinct variation between spectra of healthy and unhealthy
retina can reduce the problem of classification into a smaller
dimension of individual spectra.

The results from application to a mouse brain image,
shown in Figure 4, are shown in Figure 5 and illustrate that
it too exhibits multifractal properties. Creating a database of
3D microvasculature of mouse and rat brains using microCT
imaging is currently ongoing work. The multifractal prop-
erties of this kind of structure could lead to classification
solutions (similar to those identified in the retinal dataset)
of healthy brains and those with Alzheimer’s disease which
causes angiogenesis, giving a more complex vascular system

[1].

IV. DISCUSSION

The multifractal analysis framework presented here could
similarly be applied to 3D datasets, by extending the 2D
boxes to volumetric structures and scaling on a set of
random points. This approach would be expensive in terms
of computation runtime, as the sandbox method is relatively
inefficient. The need for a large number of box locations
and repeated applications to get significant coverage of the
data, coupled with the increase in data points for higher
dimension data, reduces the viability of sandbox method for
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Figure 3.

1D signals [17].

Results shown here on the retinal vessels complement the
idea that multifractal spectra could be used to characterise
the microvasculature for automated clinical diagnosis using
machine learning methods. The analysis results of the mouse
brain microCT images further reinforce the use of such
techniques. The available of large microCT datasets of the
microvasculature of varying state of health would allow more
extensive analysis on to clarify further the suitability of
multifractal analysis as a valuable tool for microvascular
disease classification.

[1]

Mean multifractal dimension spectra for retinal image dataset,

showing difference in dimensions between healthy and pathological retina.
Healthy patients are represented by the curve with open circles, pathological

with solid circles [Vertical error bars show 41 standard deviation]

Figure 4.

[2]

[3]

[4]

[5]

[6]

2D representation of mouse brain microCT scan and its
microvasculature mask, segmented using the automatic method presented

[7]

[8]

[9]

[10]
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‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [12]
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Figure 5. Dimension spectra of mouse brain segmentation in Figure 4 ex-
hibiting multifractal properties. Dimension and Holder exponents are higher
than those of retinal vessels due to increased complexity in vasculature [14]
the analysis. Other approaches to determining the multifractal [15]
spectra would improve computing performance and accuracy.
An example of this is to use wavelet analysis of the signal: [16]
the multiscale property of wavelets would allow the use of
a single transform to analyse the entire data and remove the
requirement for repeated applications. However the theory (17]

and implementation are less straightforward when compared
with the sandbox method. This approach has been used on
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