
  

  

Abstract— Oximeters are commonly used in abbreviated 
cardiorespiratory studies (ACS) to monitor blood oxygen 
saturation and heart rate using the photoplethysmography 
(PPG) signal. These data are prone to movement artifacts, 
especially in infants who move or need to be handled often. 
Therefore segments of PPG data contaminated by movement 
artifact must be detected as a first stage of analysis. In ACS this 
identification is generally done manually, by having an expert 
visually assess the quality of the signal. This is subjective and 
very time consuming, especially for long data records. For this 
reason we present a novel detector of PPG movement artifacts 
that uses moving average filters to remove trends, reduce the 
effect of white noise, and notch filter pulse-related information. 
The normalized root mean square of the filtered signal is then 
used as a detection statistic. We demonstrate its detection 
properties using a data set from infants recovering from 
anesthesia, and show that it performs better than other 
automated methods based on entropy or higher-order statistics. 
Furthermore, the new method is more robust than the other 
methods in the presence of large noise. 

I. INTRODUCTION 

Abbreviated cardiorespiratory studies (ACS) are 
commonly performed to assess/study respiratory conditions 
such as apnea, when full polysomnography (PSG) is not 
indicated or available (e.g., in the home [1], the recovery 
room [2], or the intensive care unit [3]). These studies acquire 
a subset of the PSG signals, typically including blood oxygen 
saturation (SaO2) and photoplethysmography (PPG), 
measured with an oximeter, as well as the ribcage and 
abdomen respiratory movements from respiratory inductive 
plethysmography (RIP). SaO2 is used to monitor oxygen 
levels with the intention to detect episodes of desaturation 
[4]. PPG is used to monitor heart rate, and its variability 
(PPGV) provides information about autonomic nervous 
system function similar to that provided by heart rate 
variability estimated from the electrocardiogram [5]. 
However, both PPG and SaO2 are prone to movement 
artifacts, especially in infants, who move and/or need to be 
handled often. Therefore data segments corrupted by 
movement artifacts must be identified and removed as part of 
any analysis procedure. This has limited the utility of 
monitoring tools based on oximeters alone [6], and as a 
consequence the use of ACS is not widespread. 
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Visual inspection of the PPG is the preferred method to 
identify movement artifacts [4]. However, it is subjective, 
suffers from low intra- and inter-operator repeatability, and is 
very time-consuming. Consequently, it is difficult to use the 
PPG for clinical monitoring and analysis of long recordings 
such as those acquired overnight. Consequently, there have 
been efforts to develop artifact reduction techniques to 
recover the underlying PPG data or estimate the heart rate 
and SaO2 from corrupted segments (e.g., “motion-resistant” 
oximeters [7]). However, before any artifact reduction 
technique is applied, it is necessary first to detect corrupted 
segments so that artifact-free data do not undergo 
unnecessary processing that might alter relevant information. 
A variety of methods have been proposed for this, including 
methods based on higher-order statistics in the time and 
frequency domains [8, 9] (e.g., kurtosis, spectral kurtosis), as 
well as Shannon entropy [9].  However, performance of these 
methods varies widely and they have not been evaluated 
under the high noise conditions that prevail in environments 
such as intensive care units or the home. 

This paper presents the design of a novel, robust detector 
of PPG movement artifacts suitable for real-time 
implementation, and compares its performance to that of 
other methods when applied to a representative infant data 
set. The paper is organized as follows: Section II summarizes 
existing PPG artifact detectors and describes the novel 
method; Section III describes the data acquisition and 
analysis procedures used to evaluate the detectors; Section IV 
reports the performance results; and Section V discusses the 
findings and provides concluding remarks. 

II. DETECTORS OF MOVEMENT ARTIFACTS 

This section first reviews three detection statistics 
commonly used for detection of PPG movement artifacts: 
entropy, kurtosis and skewness. Then, the new detection 
statistic is developed analytically. 

A. Shannon Entropy 

Movement artifacts generally appear as chaotic signals in 
contrast to the artifact-free quasi-periodic pattern of the PPG 
(see Fig. 1). The level of uncertainty in a stochastic signal, 
such as the PPG, can be quantified using Shannon entropy 
[10]. This concept was used to design an entropy-based 
detection statistic based on the hypothesis that segments 
contaminated by movement artifacts would have higher 
entropy than artifact-free segments [9]. 
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The entropy of a discrete random variable is defined as 
the expected value of the logarithm of its probability mass 
function (PMF) [10]. Estimating the entropy of a continuous 
signal is achieved by quantizing it into k discrete values, then 
estimating a PMF, and finally estimating the expected value 
of the logarithm of this PMF. Estimates at each sample time 
are obtained by repeating this procedure for each sample in 
the record using a sliding window of length Nent. Thus, for 
the PPG signal the entropy at each time point can be 
estimated as: 
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where b is the base of the logarithm used for the 
calculation of entropy, and PPPG[θ] is the estimate of the PMF 
of the PPG signal in the interval θ ∈ [n – (Nent – 1) / 2, n + 
(Nent – 1) / 2] quantized using k bins. Note that (1) is 
normalized with respect to logb(k), the maximum possible 
value [10], so that E[n] ranges from 0 to 1. 

To follow the implementation of the entropy-based 
detector developed in [9], the PPG signal was band-pass 
filtered prior to (1) with a finite impulse response (FIR) filter 
of order 64 with cut-off frequencies of 0.1 and 10 Hz, to 
remove low frequency trends and higher frequencies where 
the PPG was not expected to contain any significant power. 

B. Higher-order Statistics 

Two higher-order statistics, kurtosis and skewness, have 
been applied for detection of PPG movement artifacts [8, 9]. 
Kurtosis is defined as the standardized fourth central moment 
of a stochastic signal. A continuous estimator for the kurtosis 
of the PPG is: 
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where μp
ppg corresponds to the pth central moment of the 

PPG signal over a window of length NHOS = 2L + 1 samples 
estimated as: 
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Signals whose probability density functions (PDF) have a 
sharp peak and slow-decaying tails will have higher kurtosis 
compared to those with a broad peak and fast-decaying tails. 

Skewness, the standardized third central moment, is a 
metric of the lack of symmetry in the PDF. PDFs with a 
longer left tail will have negative values of skewness, while 
those with a longer right tail will have positive values. PPG 
skewness can be estimated over a window of length NHOS as: 
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The hypothesis underlying the use of either kurtosis or 
skewness is that the shape of the PPG PDF will change in the 
presence of movement artifact, and that this change will be 
large enough to distinguish between the two states. 

The PPG signal was band-pass filtered before estimating 
(2) and (4), using a digital zero-phase forward-backward 
Chebyshev Type I filter of order 6 with cut-off frequencies of 
0.3 and 12 Hz. Note that this filter was implemented 
following the design from [8], where kurtosis and skewness 
were used to detect PPG movement artifacts. 

C. Proposed Detection Statistic 

In reviewing PPG data we noted that: (a) artifact-free 
PPG has the quasi-periodic waveform illustrated in Fig. 1; 
and (b) PPG movement artifacts comprise stochastic low 
frequency noise whose amplitude is typically larger than that 
of the PPG. We used these observations to design a detection 
statistic for the identification of artifacts in PPG. 

The method attempts to estimate the residual component 
of the PPG signal after reducing the effect of white noise and 
notch filtering the pulse-related information. Then, the 
detection statistic appg estimates the root mean square (RMS) 
of this residual. Since movement artifacts are expected to 
have larger amplitude than artifact-free signals, appg will take 
lower values during no artifact and higher values when the 
signal is contaminated. Fig. 1 shows an example of appg 
during artifact-free and corrupted PPG. 
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Fig. 1.  (b) Representative epoch of infant photoplethysmography (PPG) 
signal; (a) corresponding output of our novel movement artifact detection 
statistic appg (black dashed line) and the optimum detection threshold (red 
dotted horizontal line); and (c) “gold standard” classification from the 
manual analysis of an expert (artifact-free = 0, movement artifact = 1, 
uncertain = 0.5). 
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The complete procedure is illustrated in the block 
diagram in Fig. 2. First, a zero-mean version of the raw PPG 
signal is obtained as PPGzm[n] = PPG[n] – μ1

ppg[n], using a 
window of length NM = 2L + 1 samples. PPGzm is then 
filtered by a moving average filter of length NT, whose 
frequency response is illustrated in Fig. 3. It is a low-pass 
filter with cut-off frequency of fc ≈ fs / (2NT) and deep nulls at 
f = mfs / NT, where fs is the sampling frequency and m is an 
integer ≥ 1. The value of NT is set equal to fs / fhr, the inverse 
of the modal heart rate of the population (estimated from the 
complete data set) so that the first null occurs at fhr. This filter 
reduces the amplitude of the most frequent pulse component 
in the signal as well as that of additive white noise. The RMS 
of the filtered signal PPGavg is computed over a sliding 
window of length NM as: 
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The detection statistic is then defined as: 
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where A[n] is normalized to account for nonstationary 
conditions in the amplitude of the PPG. To accomplish this, 
A[n] is divided by A(q)[n], the qth quantile of A in the sliding 
window θ ∈ [n – NQ + 1 , n], NQ >> NM. To ensure 
normalization is done with respect to artifact-free data, at 
least q·NQ samples in θ must be artifact-free at all times. In 
this study at least 10% of the samples (q = 0.1) in a 10 min 
long sliding window (NQ = 600 fs) were expected to be 
artifact-free. 

For windows that overlap by less than NQ – 1 samples, 
A(q)[n] may be estimated efficiently as follows: 
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where No < NQ is the number of overlapping samples. 
The first NQ - 1 samples are set to A(q)[NQ], the estimate of 
the first segment. 

III. EVALUATION PROCEDURES 

A. Subjects and Data Acquisition 

The detectors were evaluated using data from 23 infants 
(18 male), postmenstrual age [11] 42.6±2.2 weeks and weight 

3.6±0.9 kg, recorded in the postoperative period after elective 
inguinal herniorrhaphy with general anesthesia. Written 
informed parental consent was obtained and the study was 
approved by the Institutional Ethics Review Board of the 
Montreal Children’s Hospital (MCH). Subjects were 
recruited for a prospective study of Postoperative Apnea in 
infants. Data from a subset of these patients was reported 
previously in a different study [12]. PPG and SaO2, as well as 
ribcage and abdominal RIP, were recorded at a sampling rate 
of fs = 50 Hz, for 6 to 12 hours in accordance with the MCH 
practice guidelines for apnea monitoring (see [12] for 
details). 

B. “Gold Standard” 

One of the investigators (KAB) used an interactive, 
graphical, manual classification tool, to visually identify 
movement artifact (MVT) segments in the PPG signal. MVT 
was defined as any motion not related to pulse, including 
chaotic and bad signal segments. 

To account for the variability of manual classification, the 
scorer was asked to analyze each data set in two separate 
sessions. The “gold standard” scores were then determined as 
follows: (a) samples with two MVT scores were classified as 
MVT; (b) samples with no assignment to MVT were 
classified as artifact-free; and (c) samples with differing 
scores were considered to be uncertain and were excluded 
from the analysis. 

Fig. 1 shows a representative epoch of a PPG signal with 
a segment corrupted by movement artifact, and illustrates the 
“gold standard” classification for that epoch. 

C. Detection Performance 

These “gold standard” scores were used to estimate two 
nonparametric PDFs for each detection statistic: one for 
samples classified as MVT (i.e., the alternative hypothesis 
H1), and one for samples classified as artifact-free (i.e., the 
null hypothesis H0). These PDFs were used to generate the 
receiver operating characteristics (ROC) curves, defining 
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how the probability of detection (PD) and probability of false 
alarm (PFA) varied as a function of the threshold value. For 
each statistic the optimal threshold γopt was selected as the 
point furthest from the chance line (PD = PFA); this defined 
the best tradeoff between PD and PFA. The area under the 
ROC curve (AUC) was used as a measure of performance. 
An AUC = 1 indicates perfect detection and AUC = 0.5 
corresponds to the performance expected by chance. 

D. Robustness with Noisy Data 

To assess the performance of the detection statistics under 
noisy conditions, we generated independent sequences of 
white Gaussian noise to simulate electronic noise (using 
MATLABTM, The MathWorks Inc.), and pink (1/f) Gaussian 
noise [13] to simulate low frequency trends observed in PPG 
recordings. These sequences were scaled and added to the 
infant PPG data to generate a Signal-to-Noise Ratio (SNR) 
that ranged from -20 to 20 dB. The AUC was computed for 
each combination of SNR and noise type. 

IV. RESULTS 

A. Manual Analysis 

Of the 23 data sets (206 hrs), 22 were analyzed twice by 
the expert, and one was analyzed three times. This analysis 
yielded a total of 8,318 MVT (32.7 hrs) and 8,413 artifact-
free (165.6 hrs) segments; 3.7% of the total data was 
classified as uncertain (7.7 hrs). 

B. Detection Performance 

The 23 data sets were analyzed with the four detectors 
described above. The new detector, appg, used a sliding 
window of length NM = 251, and the normalization 

parameters were q = 0.1, NQ = 30,001 and No = NQ – 2fs. The 
value of NT was set to 21, corresponding to the inverse of fhr 
= 2.4 Hz (i.e., 144 beats per minute), the most frequent heart 
rate value estimated from all of the 23 infant data sets. 

The lengths of the sliding windows for the other statistics 
were set to NHOS = Nent = NM = 251. We used the natural 
logarithm for the computation of entropy (i.e., b = e), and 
estimated the PMFs using k = 16 bins as in [9]. 

Fig. 4 shows the ROCs for the different detectors. The 
new statistic, appg, performed best with an AUC = 0.93 
(optimal operating point: PD = 0.89, PFA = 0.13), followed by 
the detectors based on entropy (AUC = 0.89, PD = 0.88, PFA 
= 0.2), kurtosis (AUC = 0.81, PD = 0.82, PFA = 0.27), and 
skewness (AUC = 0.61, PD = 0.49, PFA = 0.15). 

C. Performance with Noisy Data 

Detector performance as a function of SNR is shown in 
Fig. 5(a) for white and Fig. 5(b) for pink additive noise. The 
new detector was much more robust that the other detectors, 
maintaining an AUC ≥ 0.9 for SNR ≥ 0 dB for both white and 
pink noise. In contrast, the AUC of the entropy, kurtosis and 
skewness detectors never reached 0.9, and decreased with 
increasing noise falling below AUC ≤ 0.55 at SNR ≤ 0 dB, a 
performance no better than chance. 

V. DISCUSSION 

This paper presents a new method for detection of 
movement artifacts in photoplethysmography signals, and 
compares its performance to other detectors based on entropy 
[9] and higher-order statistics [8, 9]. The new method had the 
best discriminative ability (AUC = 0.93) and maintained an 
excellent performance in the presence of severe noise, due in 
part to the noise reduction obtained from the moving average 
filter. Indeed, its performance was independent of the noise 
level for SNR ≥ 0 dB, as evidenced by the constant value of 
AUC in this SNR range. In contrast, the detection ability of 
entropy and higher-order statistics quickly decreased at lower 
noise levels (SNR ≤ 10 dB). This property is especially 
relevant for signals acquired in intensive care units or the 
home; environments where high noise is common due to 
varying ambient light conditions [14] as well as 
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electromagnetic interference from other medical instruments 
and wireless telecommunication devices [15]. Note that this 
study worked with data acquired only from infants, but 
similar results could be expected in data from adults where 
movement artifacts have similar stochastic low frequency and 
large amplitude characteristics. 

Previous studies have evaluated the performance of 
detectors using short data sets (< 15 hrs), acquired mostly 
under controlled conditions in laboratory settings  [8, 9]. 
Moreover, they used an epoch-by-epoch approach, in which 
the recording was segmented into separate frames, and then 
each frame was classified as corrupted or artifact-free. This 
may bias the evaluation since subtle events may be masked if 
only a short portion of the epoch is corrupted, or artifact-free 
segments may be discarded if they happen to be grouped in 
an epoch with a few corrupted segments. In contrast, this 
work analyzed a much larger data set (> 200 hrs) acquired in 
a clinical setting, and obtained continuous estimates of all 
detection statistics.  As a result performance was assessed on 
a sample-by-sample basis. This provided a detailed 
evaluation of performance treating the data as a continuous 
signal, which took into account the exact start and end times 
of events. 

The new detector uses operations that can be readily 
implemented for real-time use. Additionally, it uses zero-
phase (symmetric) FIR filters, so that a real-time 
implementation would have a response lag of only ½ of the 
length of the filters (a total of 5.2 s). An additional advantage 
is that it removes the local mean of the PPG and normalizes 
the value of the statistic to a local reference. As a result it will 
continue to work under nonstationary conditions where the 
offset, PPG amplitude, or both change with time. 

The method provides improved detection of PPG 
movement artifacts even in high noise conditions. Since 
corrupted segments can be promptly discarded from further 
analysis, the new detector makes it possible to: (a) better 
analyze ACS data acquired in challenging environments such 
as intensive care units or the home; (b) study autonomic 
nervous system function based on variability of the heart rate 
estimated from the PPG signal (PPGV) [5]; and (c) perform 
those analyses in data acquired during long sessions (e.g., 
overnight). Additionally, if required by the application, 
artifact reduction techniques [16-18] could be applied to 
recover the underlying PPG data from corrupted segments 
only, while preventing additional unnecessary processing in 
artifact-free segments. 

The new detector attempts to cancel the pulse-related 
information on the PPG signal to then estimate the RMS of 
the result. This is accomplished using a moving average to 
notch filter the most frequently observed heart rate value in 
the population. It might be possible to improve the notch 
filter performance and hence the distinction between artifact-
free and corrupted segments varying the length of the moving 
average filter, making the null point adaptively track the heart 
rate at each time. Future work will evaluate this possibility. 
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