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Abstract— Steady-state somatosensory evoked potential
(SSSEP) is a recently developing brain-computer interface
(BCI) paradigm where the brain response to tactile stimulation
of a specific frequency is used. Thus far, spatial information
was not examined in depth in SSSEP BCI, because frequency
information was regarded as the main concern of SSSEP
analysis. However, given that the somatosensory cortex areas,
each of which correspond to a different body part, are well
clustered, we can assume that the spatial information could
be beneficial for SSSEP analysis. Based on this assumption,
we apply the common spatial pattern (CSP) method, which is
the spatial feature extraction method most widely used for the
motor imagery BCI paradigm, to SSSEP BCI. Experimental
results show that our approach, where two CSP methods are
applied to the signal of each frequency band, has a performance
improvement from 70% to 75%.

I. INTRODUCTION

The brain computer interface (BCI) is a system that
provides a direct communication pathway between the brain
and external devices by analyzing various brain signals [1].
Among various BCI techniques, steady-state somatosensory
evoked potential (SSSEP) is a paradigm that has been
developing recently that use the brain’s response to tactile
stimulation. The concept of using SSSEP as the medium of
the interface was first suggested in [2]. If a single tactile
stimulation is given to the subjects, an evoked potential
with a specific waveform will be generated. Likewise, if the
tactile stimulations are periodically applied in the form of
a vibration with a specific frequency, the following evoked
potentials will also be periodic. By examining this periodic
response with time-frequency analysis, we can detect the
type of the stimulation frequency being given to the subject.
In their paper, Müller-Putz et al. [2] reported that selective
attention to a specific stimulus can modulate the induced
SSSEP, and they exploited this paradigm to implement a
novel BCI system. In their study, two different vibratory
stimulations with a frequency range from 20 Hz to 30 Hz
were applied on the index finger of the left and the right hand
of subjects; then, the system predicted whether the subjects
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were focusing on the stimulation at the left or right index
finger.

To the best of our knowledge, the performance of SSSEP
BCI is still too poor to allow for its implementation in
a practical interface. To improve the performance, in this
study, we apply Fukunaga-Koontz transform-based feature
extraction method [3], as applied to the motor imagery-based
BCI, which is referred to as “common spatial pattern (CSP)”
method [4].

The CSP is one of the most intensively studied feature
extraction method for the motor imagery BCI paradigm
[5]. The motor imagery paradigm exploits spatial informa-
tion about activated brain areas. For example, if a subject
imagines a left hand movement, the corresponding motor
cortex area near C4 (EEG channel located on the right side
of the parietal area in the International 10-20 system) is
activated, and this activation is observed as the attenuation
of the µ-rhythm in the area. Similarly, an imagery right
hand movement causes µ-rhythm attenuation in C3 channel,
and an imagery foot movement causes the attenuation in
Cz channel, and so on. From these spatial differences,
CSP finds spatial filters that maximize the difference in the
signal power between the two classes to be discriminated. In
previous studies, CSP proved its usefulness for extracting a
discriminative spatial pattern, outperforming other methods
[6], [7].

In the SSSEP-based BCI paradigm, spatial patterns have
not been examined in depth, to investigate whether they are
crucial for improving BCI performances. In their research,
Müller-Putz et al. [2] used only three channels (C3, Cz, and
C4) along the primary sensorimotor cortex. Dan Zhang [8]
used three channels: C3, C4, and one additional channel
selected by a statistical test. In both stuides, all the chan-
nels contributed equally to the classification procedure, and
there were no consideration of spatial correlation between
channels.

It should be noted that considering spatial information
using a sophisticated feature extraction method could be
beneficial for improving the performance of SSSEP BCI.
According to the cortical homunculus theory, (see [9], pp.
544−546), the primary somatosensory cortex, which is the
main sensory receptive area for tactile stimuli, is located
across the central sulcus, as is the primary motor cortex.
Two sensory cortices corresponding to the left hand and
right hand are located in laterally opposite regions, and
the distance between them (11−14 cm according to head
size) is sufficient to allow discrimination according to EEG
signals. Given that the partial activation of the motor cortex
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in different areas plays a major role in motor imagery-
based BCI, we can assume that analyzing the spatial pattern
of somatosensory cortex activation could be beneficial for
SSSEP BCI, if selective attention to different body parts can
evoke the partial activation of the somatosensory cortex.

Furthermore, the motivation of the CSP is well-suited to
SSSEP classification. The objective of CSP is to find the fea-
ture vector that can maximize the projected variance of one
distribution, while minimizing the variance of another. In the
selective attention-based SSSEP BCI, the SSSEP response is
observed as an amplitude change in the target frequency. This
amplitude is directly related to the variance of the waveform.
Therefore, the CSP can extract the optimal filter which can
maximize the difference in amplitude responses between the
EEG signals from different attention.

Based on the aforementioned assumptions, we applied
CSP to SSSEP classification. In their recent research, Ahn
et al. [10], briefly applied CSP to SSSEP BCI and compared
its results with the results of motor imagery BCI. Drawing
on their initial approach, in this paper, we evaluate the per-
formance improvement by the CSP, and suggest a modified
CSP method suitable for SSSEP classification, which applies
two CSP methods, on each frequency band of interest.

The remainder of this paper is organized as follows.
In Section II, we describe our experimental design for
the SSSEP BCI. In Section III, we describe two CSP-
based feature extraction methods for SSSEP classification.
In Section IV, the experimental results are presented and
the performances of each method are compared. Finally,
conclusion is drawn in Section V.

II. EXPERIMENTAL DESIGN

In this section, we will explain the experimental design,
including the stimulation unit, EEG recording device, and
interface design.

A. SSSEP BCI
An overview of the system is graphically depicted in Fig.

1. To control the transducer, digital control signals with
specific frequencies were generated by a C++ based program,
and then transmitted through the parallel port. The signals are
amplified by the transistor to apply enough power to control
the transducer.

The vibratory stimulation was administered by a round
shaped-vibration motor with a radius of 1 cm. We present a
picture of the transducer attached to a finger in Fig. 2(a). The
first transducer was attached on the thumb of the left hand,
and the second transducer was attached on the same digit of
the right hand using medical tape. During the experiment,
the transducer on the left thumb vibrated at 22 Hz, while
another transducer on the right thumb vibrated at 27 Hz.

B. EEG Recording

The EEG signals used in this study were recorded using
a Biosemi ActiveTwo R© system. The sampling rate was 512
Hz. The montage of the electrodes is depicted by thick circles
in Fig. 2(b). The signals in each trial were band-pass filtered
between 0.5 Hz and 40 Hz.

Stimuli generation Amplification

L
R

Vibration

Analysis/
classification EEG recording Selective attention

on

off

0~3 V 
Parallel port

on

0~6 V

off

CSP

FFT

Linear SVM

Fig. 1. Overview of the SSSEP-based BCI system
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Fig. 2. Experimental design

C. Interface Design

Based on the implemented system described above, we
designed the SSSEP-based interface, which can detect the
stimulus on which the subjects are focusing. For each trial,
two vibratory stimuli with different frequencies were admin-
istered to the subjects, having a duration of 10 s. Before the
stimuli were administered, one of the transducers vibrated
for 2 s as the cue. The subject was asked to concentrate on
the transducer that was indicated by the cue.

For every session, we collected 40 trials, half of which
(n = 20) were assigned to the cue on the left hand, and half
to the cue on the right hand. The set of trials assigned to the
cue on the left hand and right hand are denoted below by L
and R, respectively. The results of the trials were classified
using the methods described in the next section.

III. METHOD

In this section, we will explain two CSP-based feature
extraction methods used for SSSEP classification. The CSP
can be integrated with the SSSEP in various ways. For
example, CSP can be applied to the raw signals or to
the already band-pass filtered signals. To find the optimal
method for improving the performance, we designed three
different methods, which are briefly schematized in Fig. 3,
and compared their performances.
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A. Using Amplitudes of Raw Signals (RS)

As the basic approach, for comparison with our proposed
methods, we used the amplitudes of the frequencies of the
stimuli (f1 = 22 Hz and f2 = 27 Hz) as the feature vector
for the classification. Let us denote the mean-centered EEG
signals recorded in the n-th trial as Xn ∈ R30×5120, while
30 is the number of EEG channels and 5120 is the temporal
length of 10 s EEG signals. In this method, the feature vector
zn for Xn is obtained

zn =

[
Amp(f1)(Xn)

Amp(f2)(Xn)

]
, (1)

where Amp(f)(X) is the function that returns the amplitude
of FFT (Fast Fourier Transform) on the frequency f from
each channel of the signals X . In our experiment, the
signals from 30-channel EEG sernsors were recorded, and
therefore each zn has the form of R60×1 vector. To build
the classification model to discriminate between zn∈L and
zn∈R, we used a linear support vector machine (SVM). The
performance of the classification will be presented in Section
IV.

B. CSP on Raw Signals (CSP-R)

As the first step of applying CSP to SSSEP classification,
we applied CSP to the raw signals, then compared the
amplitudes of extracted signal components.

We calculated two covariance matrices for each class as

ΣL =
1

NL

∑
n∈L

XnX
>
n , (2)

ΣR =
1

NR

∑
n∈R

XnX
>
n , (3)

where NL and NR are the number of trials in each class.
From the sum of two matrices Σ = ΣL +ΣR, we measured
the whitening matrix P , satisfying P>ΣP = I . If the
eigen-decomposition of Σ has the form Σ = UΛU>, the
whitening matrix P can be measured by P = UΛ−

1
2 .

Let us consider V that can diagonalize P>ΣLP . Rewrite
P>ΣP = I to P>(ΣL +ΣR)P = I , and apply V to both
sides of the equation as

V >(P>ΣLP + P>ΣRP )V = I. (4)

With considering that both of V >(P>ΣLP )V and
V >(P>ΣRP )V are diagonal matrices, the spatial filter ma-
trix W = PV can diagonalize ΣL and ΣR simultaneously.
Meanwhile, if i-th diagonal element of W>ΣLW is λi, the
i-th diagonal element of W>ΣRW should be 1−λi. W can
diagonalize both of ΣL and ΣR, and corresponding diagonal
values are reversely ordered. Therefore, a spatial filter wi

(i-th column vector of W ) associated with larger λi close
to 1, can maximize the variance of the projected signals of
Xn∈L, while minimize the variance of the projected signals
of Xn∈R.

To extract the discriminative feature, which can maximize
the difference in signal power between two classes, we
collected wi corresponding to the four largest and four
smallest λi, and denoted them by

W̃ = [w1, · · · ,w4,w27, · · · ,w30] , (5)

for use as the projection vectors. Finally, the feature vector
z′n ∈ R16×1, corresponding to the n-th trial Xn was
measured by

z′n =

[
Amp(f1)(W̃

>
Xn)

Amp(f2)(W̃
>
Xn)

]
. (6)

z′n represents the amplitudes on f1 and f2 of the extracted
signal components.

C. CSP on Filtered Signals (CSP-F)

In the previous CSP-R approach, we applied CSP to the
raw signals, then measured the amplitudes from the extracted
signal components. However, the SSSEP analysis exploits
the signals of two frequency bands. To extract better spatial
filters, which work more efficiently for each frequency band,
we applied CSP method to already band-pass filtered signals
for two frequency bands, respectively. We first obtained
band-pass filtered signals Xn(f1) and Xn(f2) from the raw
signals Xn. Xn(f1) is band-pass filtered between f1−1 Hz
to f1 + 1 Hz, and Xn(f2) is filtered between f2 − 1 Hz to
f2 + 1 Hz,

We calculated the covariance matrices ΣL(f1) and ΣR(f1)
from X(n∈L)(f1) and X(n∈R)(f1), and calculated ΣL(f2) and
ΣR(f2) from X(n∈L)(f2) and X(n∈R)(f2), as we did in (2)
and (3). By the CSP approach, already described in III-B,
we obtained the spatial filter matrices Q and R. Q can
diagonalize ΣL(f1) and ΣR(f1) simultaneously, while R can
diagonalize ΣL(f2) and ΣR(f2).

From Q and R, we collected the eigenvectors correspond-
ing to the four largest and four smallest eigenvalues and
denoted them by

Q̃ = [q1, · · · , q4, q27, · · · , q30] , (7)
R̃ = [r1, · · · , r4, r27, · · · , r30] . (8)

Q̃ is the discriminative filter for Xn(f1), while R̃ is the
filter for Xn(f2). Therefore, we measured the amplitude of

Q̃
>
Xn(f1) on f1 Hz, and the amplitude of R̃

>
Xn(f2) on

f2 Hz. By concatenating the amplitudes, we obtained the
feature vector z′′n ∈ R16×1 corresponding to Xn:

z′′n =

[
Amp(f1)(Q̃

>
Xn(f1))

Amp(f2)(R̃
>
Xn(f2))

]
. (9)

Then, the classification model for discriminating z′′n∈L and
z′′n∈R was trained.
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Fig. 3. Two methods for applying the CSP for the SSSEP classification

Subjects Sessions RS CSP-R CSP-F

1 1 60.0 62.5 85.0
2 72.5 47.5 80.0

2 1 62.5 57.5 77.5
2 87.5 80.0 70.0

3 1 57.5 42.5 62.5
2 87.5 57.5 80.0

4 1 62.5 52.5 72.5
mean 70.0 57.1 75.4

TABLE I
CLASSIFICATION ACCURACY

IV. EXPERIMENTS

Using the three methods described in the previous section
(RS, CSP-R, and CSP-F), we obtained three kinds of feature
values (z, z′, and z′′). We classified the obtained feature
values by applying linear SVM [11], and compared the
results of five-fold cross-validation.

For the experiment, the signals are recorded from four
healthy male subjects, whose ages varied from 26 to 29
years (mean value = 27.8). The performances are presented
in Table I. The result of one session of Subject 4 is omitted,
because all performances could not reach 60%. As shown in
the table, in most of cases, the CSP-F method outperformed
RS and CSP-R.

In Fig. 4, we plot the exemplary spatial patterns, obtained
from the column vectors of (W−1)>, (Q−1)>, and (R−1)>,
to examine their correspondence to the neurophysiological
background. The spatial patterns from (Q−1)> and (R−1)>,
obtained from the CSP-F method, showed more meaningful
results than the patterns from CSP-R method. (Q−1)>4 ,
meaning the fourth column vector of (Q−1)> emphasized
the parietal area corresponding to the somatosensory cor-
tex. (Q−1)>28 and (R−1)>2 showed laterally antisymmetric
patterns. These patterns can represent desynchronization be-
tween the somatosensory cortices of the left and right hemi-
spheres. We believe that CSP can serve an important role in
improving the performance of SSSEP BCI, by considering
the spatial information more sophisticatedly, as shown in the
results.

(W−1)T [3]

(W−1)T [29]

(a) CSP-R

(Q−1)T4

(Q−1)T28

(R−1)T2

(R−1)T27

(b) CSP-F

Fig. 4. Spatial patterns from each method

V. CONCLUSIONS

In this paper we have applied the CSP method to SSSEP
BCI to investigate wheter considering spatial information is
beneficial for SSSEP analysis. We described the potential of
CSP for improving the performance of SSSEP BCI, and also
described the implementation procedure. From the experi-
mental results, CSP-F method, in which two CSP methods
are applied to each frequency band, showed a performance
improvement from 70.0% to 75.4%. In our future work, we
will perform additional investigations to verify the exact
spatial pattern of SSSEP, which we believe are essential
considerations for realizing practical SSSEP BCI.
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