
  

 

Abstract—The goal of this study was to develop a new 

steady-state visual evoked potential (SSVEP)-based BCI system, 

which can be applied to disabled individuals with impaired 

oculomotor function. The developed BCI system allows users to 

express their binary intentions without needing to open their 

eyes. To present visual stimuli, we used a pair of glasses with two 

LEDs flickering at different frequencies. EEG spectral patterns 

were classified in real time while participants were attending to 

one of the presented visual stimuli with their eyes closed. 

Through offline experiments performed with 11 healthy 

participants, we confirmed that SSVEP responses could be 

modulated by visual selective attention to a specific light 

stimulus penetrating through the eyelids, and could be classified 

with accuracy high enough for use in a practical BCI system. 

After customizing the parameters of the proposed SSVEP-based 

BCI paradigm based on the offline analysis results, binary 

intentions of five healthy participants and one locked-in state 

patient were classified online. The average ITR of the online 

experiments reached to 10.83 bits/min with an average accuracy 

of 95.3 %. An online experiment applied to a patient with ALS 

showed a classification accuracy of 80 % and an ITR of 2.78 

bits/min, demonstrating the practical feasibility of our BCI 

paradigm. 

 

I. INTRODUCTION 

Many patients suffering from severe neuromuscular 
diseases such as amyotrophic lateral sclerosis (ALS), 
brainstem stroke, multiple sclerosis, and spinal cord injury 
have difficulty communicating with other people. 
Brain–computer interfaces (BCIs) are non-muscular 
communication methods that help such individuals interact 
with the outside world using brain activity [1]. In BCI studies, 
one of the most widely used electroencephalography (EEG) 
potentials is steady-state visual evoked potential (SSVEP), 
which is a periodic neural response elicited by a certain visual 
stimulus flickering at a specific frequency. Since BCI systems 
based on SSVEP can provide a high information transfer rate 
(ITR) and do not require extensive training procedures, a 
variety of SSVEP-based BCI systems have been developed 
and applied to such activities as controlling an electric 
apparatus [2], playing a 3D game [3], operating an electrical 
prosthesis [4], controlling an avatar in a virtual reality 
environment [5], and mentally spelling words [6]-[8]. 
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The conventional SSVEP-based BCI systems commonly 
require the basic assumption that the users have normal 
oculomotor function and thus are able to maintain an open 
gaze at a given visual stimulus consistently. In practice, 
however, it has been reported that some patients suffering 
from serious neuromuscular disorders have difficulty 
controlling their eyes [9]-[11]. In particular, many patients 
with ALS have oculomotor impairments [12]-[13] causing 
abnormal visual perception [14]. According to studies by 
Okuda et al [9] and Averbuch-Heller et al [11], some ALS 
patients have abnormal eye movements with prominent gaze 
impairments. A study by Averbuch-Heller et al [11], for 
instance, described an ALS patient with normal corrected 
visual acuity who could move his eyes horizontally but had 
difficulty opening his eyes and moving them upward. These 
patients would not be able to open their eyes continuously to 
gaze at one of the target visual stimuli.  

The main goal of the present study was to develop a new 
SSVEP-based BCI system that can be used for classifying 
binary intentions of individuals who have impaired 
oculomotor function. In this study, we implemented a visual 
stimulation system using a pair of glasses and LEDs attached 
to the glasses. EEG signals were measured while participants 
were selectively concentrating on either the left or right LED 
flickering at different frequencies with their eyes closed. 
Preliminary offline experiments were conducted with 11 
healthy participants to confirm that distinct SSVEP responses 
could be recorded from the ‘eyes-closed’ participants. After 
customizing parameters based on the results of preliminary 
offline experiments, the binary intentions of five healthy 
participants and one ALS patient were classified in real time. 

 

II. MATERIALS AND METHODS 

A. Design of a Visual Stimulation System 

In order to present flickering visual stimuli to eyes-closed 
participants, we implemented a new visual stimulation system 
using a pair of glasses, LEDs, and an LED controller. We first 
made two LED channels composed of four square, multi-chip, 
high-flux LEDs. Then, each LED channel was attached to the 
inside of each lens of eyeglasses utilizing Velcro fasteners as 
shown in Fig. 1(a). Each LED channel attached at the lateral 
side of each eye flickered at different frequency. The locations 
of the LED channels could be readily adjusted depending on 
each participant’s eye position. To control the LED channels, 
an LED controller was fabricated using a TMS320F2812 chip 
(Texas Instruments Inc., USA). The flickering frequency of 
each LED channel could be easily adjusted using in-house 
software developed by the authors. In this study, a frequency 
band of 7 – 17 Hz was empirically selected as the stimulation 
frequency band, different combinations of two stimulation 
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frequencies were determined for each participant through the 
preliminary experiment [15]. Table I shows the selected 
optimal pair of flickering frequencies for each participant. 

  

B. Experimental Procedures 

Offline experiments were conducted with healthy 11 
participants (P1-P11) to verify whether the SSVEP responses 
modulated by selective attention to a specific flickering light 
stimulus penetrating through the eyelids could be classified 
with accuracy high enough to be used in practical BCI systems. 
The participants were required to gaze at either the left or right 
LED for 10 s with their eyes closed. This procedure was 
repeated 100 times to obtain 50 epochs of SSVEP responses 
for each of the ‘left’ and ‘right’ trials. 

To verify whether the proposed paradigm could be used 
for a practical BCI system, we conducted online experiments 
with 5 out of the 11 healthy participants (P7-P11). For the 
online experiments, two electrodes showing the highest 
classification accuracies were selected for each participant 
based on the offline analysis results (See Table 2 for the 
selected electrodes). Fig. 2 shows the online experimental 
paradigm. At the beginning of each trial, instructions were 
presented through the speakers in front of the participant, 
indicating which visual stimulus the participant should gaze at 
(“left” or “right”). Two seconds later, a pure tone was 
presented to the participants to indicate that they should begin 
concentrating on the designated visual stimulus for a certain 

period. 

We tested four time periods (2, 3, 4, and 5 s) to investigate 
changes in the performance of our BCI paradigm. While the 
participants were focusing on either visual stimulus, EEG 
signals were recorded and analyzed in real time. The 
classification results were provided to the participants 
(“Correct” or “Wrong”) via the speakers right after the 
recording period. An experimental session consisting of 10 
trials (five for left stimulus and five for right stimulus) was 
repeated three times for each of four different time periods.  

Another online experiment was conducted with an ALS 
patient (male, 43 years old). The patient was completely 
locked-in state and could only control his eyes horizontally, 
but the movement speed was extremely slow. Before the 
experiment, we selected two stimulation frequencies, 6 Hz for 
the left stimulus and 7 Hz for the right stimulus. To verify the 
practicality of the developed ‘eyes-closed’ SSVEP-based BCI 
system, we attempted to communicate with the patient using 
our BCI system. We asked ten different questions related to 
the patient, e.g., Are you older than 30?, and the patient 
answered ‘yes’ or ‘no’ using the developed ‘eyes-closed’ 
SSVEP-based BCI system. At the mean time, the right and left 
LED stimuli were assigned to ‘yes’ and ‘no’ responses, 
respectively. The time period for each question was set to 6 s.  

 

D. EEG Data Recording and Analysis  

The EEG signals were recorded using eight electrodes 
(POz, PO1, PO2, PO3, PO4, Oz, O1, and O2) attached to the 
participants’ scalps according to the international 10-20 
system. In the online experiment performed with an ALS 
patent, only three electrodes (Oz, O1 and O2) were used to 
simplify the experimental procedures.  

In the offline analyses, we tested three different types of 
feature vectors: spectral powers at stimulation frequencies, 
denoted as H1; those at the second harmonic frequencies (2 × 
stimulation frequencies), denoted as H2; and the arithmetic 
sum of H1 and H2, denoted as H1+H2. To select two optimal 
electrodes and an optimal feature type for online experiments, 
the classification accuracies were evaluated for each electrode 
and each feature type. Ten different analysis window sizes 
(1-10 s with a step of 1 s) were tested to evaluate the influence 
of analysis time periods on the classification accuracy. We 
used a simple classification algorithm that searches for the 
frequency with the largest SSVEP amplitudes (H1, H2, or 
H1+H2). 

In the online experiments, we used the same classification 
strategy as in the offline experiments.  

 

TABLE I.  A CHOSEN PAIR OF OPTIMAL FLICKERING 

FREQUENCIES FOR EACH PARTICIPANT. 

Participant 

Flickering 

Frequencies (Hz) Participant 

Flickering 

Frequencies (Hz) 

Left Right Left Right 

P1 10 13 P7 10 11 

P2 10 11 P8 9 10 

P3 9 13 P9 16 17 

P4 13 11 P10 7 8 

P5 12 9 P11 9 13 

P6 9 11    

 

 
Fig. 2. A schematic diagram of the experimental paradigm used for 

online experiments.  

TABLE II.  RESULTS OF ONLINE EXPERIMENTS WITH RESPECT TO 

DIFFERENT TIME PERIODS..  

Participants Electrodes 
Classification Accuracy (%) 

2 s 3 s 4 s 5 s 

P7 PO2, O2 80.0 100.0 93.3 100.0 

P8 Oz, O2 80.0 80.0 93.3 90.0 

P9 POz, PO2 96.7 96.7 100.0 100.0 

P10 Oz, O1 73.3 83.3 96.7 93.3 

P11 POz, PO2 76.7 90.0 93.3 96.7 

Mean (%)  81.3 90.0 95.3 96.0 

ITR (bits/min)  9.21 10.62 10.83 9.09 

 

 
Fig. 1. The newly developed visual stimulation system consisting of a 

pair of glasses, LEDs, and an LED controller.  

 
Fig. 3. The classification accuracy for each participant with respect to 

varying analysis window sizes and average classification accuracy for all 

participants (black bold line). 
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III. RESULTS 

A.  Offline Analysis Results 

Fig. 3 shows the changes in classification accuracy for 
each participant with respect to different analysis window 
sizes when the optimal feature type and the best electrode 
were used. The average classification accuracy was 74.8% 
when the analysis window size was 1 s, and it exceeded 90% 
when the analysis window size was longer than 4 s, 
demonstrating that the SSVEP responses obtained under 
eyes-closed condition can be classified with high accuracy. 

 

B. Online Experimental Results 

Table II shows the results of online experiments performed 

with the five healthy participants with respect to different time 

periods. The time listed in the second row in the table is that 

allotted for gazing at each designated stimulus. As shown in 

the table, the average classification accuracy increased as the 

time period increased (2 s: 81.3%, 3 s: 90.0%, 4 s: 95.3%, and 

5 s: 96.0%). It is worthwhile to note that the average 

classification accuracy was 81.3% even when the time period 

was only 2 s, demonstrating that our paradigm could be used 

for a BCI system requiring quick responses. The highest 

average ITR was obtained when the given time period was 4 s, 

suggesting that the trade-off between classification accuracy 

and ITR should be carefully considered.  

The ALS patient correctly answered 8 out of the 10 

questions (80 % accuracy) and the ITR was 2.78 bits/min. 

Although the number of questions was relatively small, our 

results are meaningful in that the proposed ‘eyes-closed’ BCI 

paradigm could be used for the locked-in patient.  

 

IV. DISCUSSION  

Some patients suffering from severe neuromuscular 
diseases have difficulty controlling their eyes [9]-[11]. Since 
these patients have difficulty gazing at specific visual stimuli 
or keeping their eyes open for a long time, they are unable to 
use the typical SSVEP-based BCI systems. In the present 
study, we introduced a new SSVEP-based BCI paradigm, 
which can be used for disabled individuals with impaired 
oculomotor function. In order to provide visual stimulation to 
these ‘eyes-closed’ individuals, we implemented a visual 
stimulation system with two LEDs flickering at different 
frequencies in a pair of glasses. The results of our offline and 
online experiments demonstrated the feasibility of our 
proposed paradigm.  

In this study, we used a conventional frequency detection 
method based on FFT to identify the user’s intentions. 
Recently, several researchers proposed new target detection 
algorithms, such as canonical correlation analysis (CCA) and 
phase-constrained CCA (p-CCA) [16, 17]. It has been proven 
that the novel target identification methods based on CCA 
could increase the overall performance of SSVEP-based BCI 
systems. In our future studies, we will apply the CCA-based 
target detection methods to our BCI system. 

In the previous studies, some BCI paradigms using other 
senses were proposed for communication of patients who have 
impaired oculomotor function. In Müller-Putz et al’s study 

[18], steady-state somatosensory evoked potential (SSSEP) 
was used for classifying binary intentions. The reported online 
classification accuracy was between 53.5% and 88.1%. Also, 
in a study by Kim et al [19], a paradigm based on steady-state 
auditory evoked potential (SSAEP) was proposed and showed 
an average classification accuracy of 71.4%. Despite that both 
methods were applied only to healthy participants, the ITRs of 
the two studies were 3.45 bits min

-1
 and 0.819 bits min

-1
, 

respectively, which is relatively low compared to ours (the 
average ITR was 10.83 bits min

-1
 for healthy participants). 
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