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Abstract—Current brain–machine interfaces are based on the 

implicit assumption that information encoded by neuronal 

activities does not change despite some recent physiological 

studies indicating that information encoded by neuronal 

activities changes. Here, we highlight the necessity for advanced 

decoding of neuronal activities. Especially, we discuss the 

advantages of multilateral analyses of neuronal activities, 

including synchronization and variability. 

I. IMPLICIT ASSUMPTION OF CURRENT BMIS 

Brain–machine interfaces (BMIs) are expected to provide 
revolutionary technology that will be of great benefit for the 
lives not only of people with physical challenges but also of 
healthy people [1]. BMIs convert neural activity into signals 
that can control machines, devices, or computers [2]. BMIs 
represent promising technology to control such devices using 
only thought, without the need for manipulation of ordinary 
interfaces such as handles or computer mice. 

Current BMIs are based on the implicit assumption that 
the type of information encoded by brain activities does not 
change. Many BMI studies using neuronal activities in the 
cerebral cortex have examined the control of a robot arm [2] 
or a computer cursor [3] by neuronal activity in motor-related 
cortical areas such as the primary motor area. The information 
encoded by neurons used by BMIs exhibits gradual changes 
along with the adaptation to the task demands under 
appropriate feedback to the brain [4]. However, once both the 
neurons and the BMI decoding the neuronal activity have 
reached an optimum state, the information encoded by 
neurons remains of a certain type, such as vectors of cursor 
movement.  

II. REPRESENTATIONAL TRANSITION OF INFORMATION 

ENCODED BY NEURONAL ACTIVITIES 

Recent physiological studies have shown that neurons in 

higher association areas in the cortex are capable of exhibiting 

rapid changes in the types of information encoded by their 

activity [4 – 6]. For example, we have reported that neurons in 

the monkey prefrontal cortex exhibited representational shifts 

in behavioral goals encoded by firing rate (Fig. 1) [6,7]. A 

path-planning task is a demanding task in which monkeys plan 
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an immediate goal of action to attain a final goal presented 

early in the preparatory period of the trial (see Methods). A 

typical prefrontal neuron, referred to as the representational 

shift neuron, showed changes in firing rate dependent upon its 

preference for the final goal position early in the preparatory 

period. Later in the preparatory period, the firing rate of the 

neuron was dependent on the immediate goals planned by the 

monkey. 

 

Figure 1.  The lateral prefrontal cortex showing a representational shift. a, 

Path-planning task. The monkey was required to move a cursor step by step 

to reach a final goal in a checkerboard-like maze on a monitor. After 1 s 

(Initial hold), a green cursor appeared at the center of the maze (Start 

display), and 1 s later, a red square was displayed for 1 s, indicating the 

position of the final goal (Final goal display). After a delay of 1 s, one or two 

of four possible paths to the goal were blocked. This was followed by another 

1-s delay (Delay). Thereafter, when the cursor color was changed from green 

to yellow (1st go), the animal was required to move the cursor within 1 s to 

the first position (Immediate goal). Then, the animal had to move the cursor 

stepwise to reach the final goal, where the animal was rewarded. b, Discharge 

properties of a prefrontal neuron that represented the final goal position 

followed by the immediate goal position during the preparatory period. pfd, 

preferred; n.p., non-preferred; F.G., final goal; I.G., immediate goal. c, The 

time course of modulation of the final (red line) and immediate goal (blue 

line) selectivity (see Methods) of the neuron shown in b. Modified with 

permission from Ref. [8]. 

If the abstract information represented in the higher 
association areas were available for the BMI, innovative 
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communication could be realized between the brain and 
various types of machine. For example, it may be possible for 
the user to provide abstract instructions, such as “feed me,” to 
a robot arm through the BMI instead of concrete orders, such 
as to “move right” or “bring the spoon to my mouth.” 

To utilize such abstract information encoded in the higher 
association areas, machines require quite high-level abilities. 
Especially, for a machine to make concrete actions in response 
to abstract instructions, it has to possess an extremely high 
degree of autonomy. However, such an advanced machine 
should have the ability to switch its decoding strategies just in 
time for the changes in types of information encoded by brain 
activities. If any signs of changes in the information types can 
be detected, they may be employed for switching the strategies 
used for decoding the brain signals. 

III. MULTILATERAL ANALYSES FOR DETECTING EARLY 

WARNING SIGNALS OF REPRESENTATIONAL TRANSITION 

  

Figure 2.  Temporal relationship between synchronization and 

behavioral-goal selectivity of neuronal activity analyzed for neuron pairs 

with representational shift neurons. Selectivity for final (red line) and 

immediate (blue line) goals calculated for the population of neurons with 

representational shift. Normalized synchrony of each neuron pair was 

calculated by taking the peak value as 1, and values were then averaged over 

the preparatory period (black line). Modified with permission from Ref. [6]. 

The neuronal signal that is usually used for the invasive 
types of BMI is firing rate or spike count per time window. 
However, the signals available from raw spike data are not 
limited to firing rate. Multilateral analyses of raw neuronal 
data are capable of providing other signals simultaneously, 
such as correlations between the activities of two neurons or 
fluctuations in neuronal activity. 

Previously, we analyzed the spike correlations of neuronal 
pairs including the above-mentioned representational shift 
neurons (see Methods) [6]. We selected neuronal pairs 
showing significant synchronization and analyzed the time 
development of the degree of synchronization. This analysis 
indicated that the times of enhancement of synchronization 

were correlated with those of representational shift (Fig. 2). 
We also analyzed the fluctuations in activity or firing 
variability of the representational shift neurons (see Methods) 
[8]. Our preliminary results indicated that the firing variability 
increased prior to the representational shift. These results 
suggest that firing synchronization and fluctuations have the 
potential to serve as early warning signals [9,10] for 
representational shift or changes in types of information 
encoded by the firing rate of neurons. Utilizing these 
multilateral signals may enable rapid switching decoding 
strategies for neuronal activities.  

IV. FUTURE DIRECTIONS FOR BMI RESEARCH 

Neurons in the cerebral cortex, especially in higher 
association areas, are capable of exhibiting rapid changes in 
the type of information encoded by their activity. Utilizing 
these changes in activity for BMI would require appropriate 
switching of decoding strategies. For switching at an 
appropriate time, signals such as synchronization and/or 
variability obtainable from multilateral analyses on neuronal 
activities would be useful. 

However, to realize such advanced BMIs capable of rapid 
switching of decoding strategies, it is necessary to have prior 
knowledge regarding the types of information encoded in 
neuronal activity before and after switching. This implies that 
even such advanced BMIs would be applicable only to routine 
tasks or tasks in which the working environment or situations 
are well defined and fully predictable in advance. In contrast, 
the real environment includes wide varieties of novel 
situations. To handle such novel situations and resolve the 
accompanying difficulties, people conceive of various 
solutions or ideas. It would be quite difficult to decode such 
novel ideas or the information encoded in the associated 
neuronal activity. 

To decode neuronal information even in novel situations, a 
process for rapid development of strategies or strategy 
improvisation in parallel with the decoding process may be 
indispensable (Fig. 3). This parallel processing seems similar 
to that involved in decoding the ancient Egyptian hieroglyphs 
on the Rosetta stone [11]. In that decoding process, the 
sentences of hieroglyphs were read, while the grammar of the 
ancient Egyptian language was being determined in parallel 
based on correlations with the Greek sentences also written on 
the stone. In a similar way, the whole decoding process for 
neuronal information in novel situations will require input not 
only from the brain but also from the environment, such as 
images or sounds. It will also require a subprocess for rapidly 
finding new correlations between brain signals and contextual 
information from the environment. Recently evolving 
data-mining technologies may also make great contributions 
to such a subprocess. Neuronal signals from multilateral 
analyses, such as synchronization and fluctuations, will still be 
of value by serving as cues for improvising new decoding 
strategies. 
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Figure 3.  Schematic views for proposed conceptual differences between 

current and future BMIs. 

V. METHODS 

A.  Behavioral Procedures 

Physiological studies were performed on two Japanese 
monkeys (Macaca fuscata) trained in the path-planning task, 
described previously [12] and in the legend to Fig. 1. 
Conventional electrophysiological techniques were used to 
obtain in vivo single-cell recordings from the lateral prefrontal 
cortex above and below the principal sulcus in the right 
hemisphere [12].  

B. Analysis of Goal Representations by Firing Rate 

We focused on neuronal activity during the preparatory 
period (initial hold, final goal display, delay). For statistical 
assessment of how the final and immediate goals were related 
to cell activity, linear regression analysis was conducted using 
the following regression model: firing rate = β0 + β1   (final 
goal) + β2   (immediate goal), where β0 is the intercept, and 
β1 and β2 are the regression coefficients. The categorical 
factors for the final and immediate goals were horizontal and 
vertical directions. The firing rate was calculated as spike 
counts in 100 ms. The time development of the coefficients 
was normalized by the significance level of the t-value (P < 
0.05). Details were also described previously [6]. 

C. Analysis of Neuronal Synchrony 

We used the time-resolved cross-correlation method 
[6,13,14] to assess changes in the synchrony of neuron pairs 
independently of changes in the firing rate of individual 
neurons using the instantaneous firing rate (IFR) estimate to 
correct for firing rate modulation. 

A time-resolved cross-correlation (TCC) histogram was 
obtained by cross correlating the spike times of two neurons in 
a pair. This histogram is a plot for spike timing of one neuron 
within ±200 ms of when the other neuron fired. The predictor 
(time-resolved cross predictor; TCP) used to estimate false 
synchrony caused by fluctuations in firing rate was estimated 
by cross correlating IFRs. The IFR at each time point was 
defined from the reciprocal of the interspike interval. Thus, 
the IFR was obtained for each trial, avoiding detection of false 

synchrony caused by intertrial fluctuations. The TCP was 
subtracted from the TCC at each data point, and this value was 
summed over the task period to create the standard 
cross-correlation histogram (CCH). 

The CCH was used to select significantly synchronous pairs 
based on the following criteria: more than 2000 spikes 
contributed to the cross-correlation estimate, the CCH had a 
positive peak >4.41 SDs above baseline (P < 0.00001), and 
the significant peak was within ±25 ms of the center of the 
CCH [15]. 

To examine synchrony in the significantly correlated pairs 
of spikes over time, we first calculated raw synchrony (RS) by 
averaging the synchrony magnitudes in the TCC, taken from 
the half-width area around the peak in the CCH. Similarly, we 
calculated the firing rate-dependent synchrony (FRDS) as a 
reference or predictor for synchrony estimated from the firing 
rate. Then, we calculated the difference between RS and 
FRDS (divided by the SD of the latter for normalization) and 
plotted the values as normalized synchrony. Here, we use the 
term synchrony in place of normalized synchrony for 
simplicity. 

D. Evaluation of Firing Regularity/Irregularity 

Interspike interval [ISI] variability was analyzed to 
determine firing regularity/irregularity. We used a recently 
developed measure for ISI variability, LVR [16]. In LVR, the 
constant, R, which compensates for the effects of the neural 
refractoriness of a previous spike, was introduced to exclude 
the influences of firing rate more strictly than local variance, 
LV. The mean LVR was defined as: 







1

1

)(
1

1
n

i

VV
iRL

n
RL , 







































iiii

ii

V
ISIISI

R

ISIISI

ISIISI
iRL

1

2

1

1 4
1

)(

4
1)( . 

ISI was calculated with a time resolution of 1 ms, and n is 
the number of ISIs during the period of interest. For simplicity, 
we refer to <LVR> as LVR. We successfully excluded the 
influence of firing rate using LVR (R > 10 ms) [17]. 
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