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Abstract² Dual-frequency steady-state visual evoked 

potential (SSVEP) was suggested to generate more stimuli using 

a few flickering frequencies for brain-computer interface. 

Dual-frequency SSVEP peaks at more than two 

frequencies²both main and harmonic frequencies. However 

multi-frequency recognition strategy has not been investigated 

for dual-frequency SSVEP. In this paper, three modified power 

spectral density analysis (PSDA) methods and two modified 

canonical correlation analysis (CCA) methods were tested for 

dual-frequency SSVEP classification. Three methods among the 

five methods used conventional features or classification 

techniques, and the other two methods used modified features 

for harmonic frequencies. As a result, CCA with novel features 

showed the best BCI performance. Also the use of harmonic 

frequencies improved BCI performance of dual-frequency 

SSVEP. 

I. INTRODUCTION 

Electroencephalography (EEG) based brain-computer 
interface (BCI) allows user to non-invasively interact with the 
environment without limb movement [1], employing various 
brain signals such as steady-state visual evoked potential 
(SSVEP) [2], P300 [3], sensorimotor rhythm (SMR) [4], or 
auditory responses [5]. Among them, SSVEP-based BCIs has 
been widely investigated because of its low requirement of 
training and high BCI performances [2].  

SSVEP is periodic evoked potential elicited by a visual 
stimulus flickering at a constant frequency, showing spectral 
characteristic that peaks occur at multiple harmonic 
frequencies such as main, second, or sub harmonic frequency 
[6]. SSVEP-based BCIs classify SSVEP segments by 
exploiting the spectral characteristic. The most used frequency 
recognition methods for SSVEP are power spectral density 
analysis (PSDA) and canonical correlation analysis (CCA). 

PSDA usually uses spectral power or signal-to-noise ratio 
(SNR) of SSVEP at specific frequency. SSVEP classification 
is accomplished by choosing the largest value among those of 
targets [7] or just using linear discriminant analysis (LDA) [8]. 
Whereas, CCA seeks linear transformation such that 
correlation between two random variables is maximize. CCA 
classifies SSVEPs in reference to the correlation coefficient. 
Because multidimensional sets can be used as the variables, 
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multichannel EEG data can be simply analyzed using CCA [9]. 
G. Bin et al. compared CCA and PSDA for online 
multi-channel SSVEP-based BCI, CCA was superior to PSDA 
[9]. 

SSVEP peaks appear at stimulus frequency and its 
harmonics, the number of flickering frequencies should be the 
same with the number of targets for SSVEP-based BCIs. 
However, the number of flickering frequencies can be limited 
in certain conditions (e.g., using a monitor as visual stimuli). 
K. ±K. Shyu et al. recently suggested dual-frequency SSVEP 
for generating more stimuli with a few flickering frequencies 
[10]. Through combination of the frequencies, NC2 + N stimuli 
can be generated using only N flickering frequencies. 
Contrary to conventional single-frequency SSVEP, 
dual-frequency SSVEP has peaks at non-integer harmonic 
frequencies as well as main frequencies. In [10], in response to 
a dual-frequency stimulus flickering at different frequencies 
(f1 and f2), spectral peaks occurred at the symmetric harmonic 
frequencies: 2f1íf2 and 2f2íf1. In [11], flickering frequencies 
for dual-frequency stimulus were in low-frequency band less 
than 5Hz, and SSVEP peak appeared at the sum of the 
frequencies. In our previous study, one more harmonic 
frequency was found at |f1íf2|. 

Even though some research groups reported characteristics 
of dual-frequency SSVEP, BCI system using the brain 
response has scarcely been implemented. And to our 
knowledge, classification strategy for dual-frequency SSVEP 
has not been investigated using both main and harmonic 
frequencies. Conventional frequency recognition methods are 
optimized for single-frequency SSVEP, so modification or a 
new method is required for dual-frequency SSVEP. The new 
strategy can exploit the harmonic frequencies as well as main 
frequencies.  

In this paper, modified PSDA and CCA were tested for 
dual-frequency SSVEP classification. Three methods used 
conventional features (SNR or correlation) or classification 
methods (ranking or LDA). The other two methods used 
modified features contributed by both main and harmonic 
frequencies, taking advantage of harmonic frequencies.  

II. METHODS 

A. Dual-frequency stimulus 

A dual-frequency stimulus was generated as two sine 

waves at different frequencies (f1 and f2). Two LED arrays 

flickered as the different sine waves respectively, composing 

a visual stimulus. Diffusion film was attached above the 

arrays so that subjects could attend the stimulus without 

focusing on only one side. The flickering frequencies were 

non-harmonic and in medium frequency range: 19Hz, 23Hz, 

27Hz, and 31Hz. Four pairs of them were used as 
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dual-frequency stimuli: (19Hz, 27Hz), (19Hz, 31Hz), (23Hz, 

27Hz), and (23Hz, 31Hz).  

B. Experimental Settings 

Total of three subjects (two males and one female) 

participated in the experiment with informed consent. They 

had corrected-to-normal vision and no experience or family 

history of epileptic seizure.  

At t=0s, subjects were requested to gaze at the cross in the 

center of a 26inch monitor (T260HD, Samsung, Korea). 

When a target was presented at t=3s, subjects had to attend to 

the relevant LED array for six seconds among the four arrays 

around the monitor. During attending to the target, eye or jaw 

movement was not allowed to avoid noise. After a beep at 

t=9s, subjects could freely move their eye or jaw. Every target 

was randomly attended for ten times equally. From total of 

6s-length EEG analysis, first 0.5s data was rejected to exclude 

noise generated from eye or neck movement to locate the 

target.  

Two-channel EEG signal was achieved using g.USBamp 

(g.tec, Austria) at O1 and O2 well known for engaging in 

SSVEP generation [12]. The reference and ground electrodes 

were positioned at A1 and Fpz, respectively. The sampling 

rate was 512Hz, and the high-pass filter at 2Hz and notch filter 

at 60Hz were applied on the amplifier. 

C. Spectral analysis of dual-frequency SSVEP 

Spectrum of each target was estimated according to the 

subjects using g.BSanalyze (g.tec, Austria) to identify 

harmonic frequencies of dual-frequency SSVEP. The 

µVSHFWUXP¶� IXQFWLRQ� ILUVW�GHWUHQGHG�DQG�ZLQGRZHG��V-length 

EEG signal, and estimated the square of the value of Fast 

Fourier Transform (FFT). The power spectral density (PSD) 

of each target was used to estimate signal-to-noise ratio (SNR) 

of SSVEP [12]. The SNR was the ratio of PSD at each 

frequency to the mean PSD of adjacent eight frequencies. 

Frequency with SNR larger than 3 was identified as peak 

frequency. Then peak frequencies of each target were 

compared to find harmonic components of dual-frequency 

SSVEP. The frequency components commonly found for 

multiple targets were defined as harmonic components of 

dual-frequency SSVEP. And every combination of the 

harmonic frequencies was employed as a feature for multiple 

frequency recognition. To consider the effect of the main 

frequencies, the combination always contained the two main 

frequencies. 

D. Power spectral density analysis 

Three different frequency recognition methods were 

devised for PSDA: (1) SNR-ranking, (2) SNR-sum, and (3) 

SNR+LDA. The SNRs were estimated from an EEG segment 

of each trial, the length of which was varied from 1s to 5s. 

The segments were extracted using rectangular window 

starting at every second of each trial. For example, 

1s-segment was extracted from each trial starting at 3.5s, 4.5s, 

5.5s, 6.5s, and 7.5s.  

The first method was to pick two frequencies out among 

the four main frequencies (19Hz, 23Hz, 27Hz, and 31Hz) 

according to SNRs. Four stimulus frequencies were arranged 

in descending order of SNR. Because every target was 

composed of combination of two frequencies, first two 

frequencies in the rank were further compared with the four 

stimulus frequency pairs. If the two frequencies were 19Hz 

and 27Hz, the EEG segment was classified as class 1; 19Hz 

and 31Hz as class 2; 23Hz and 27Hz as class 3; 23Hz and 

31Hz as class 4. If the frequencies with the first two largest 

SNRs did not correspond to any of the stimulus frequency 

pairs, the class was 0. 

The second method was to consider sum of SNRs at the 

two main frequencies and the harmonic frequencies. The 

SNR values were summed at the main frequencies (SNRi,f1, 
SNRi,f2) and the combination of the harmonic frequencies 

(SNRi,fharm) according to the class as 

 

SNRi = SNR i, f1 + SNR i,f2 + SNRi,fharm,      i=1,2,3,4 

 

where i is the class. Then the class with the largest SNR sum 

was decided as the target the subject attended. BCI 

performances (accuracy) were compared according to the 2
N
 

combinations of the N harmonic frequencies. And the best 

BCI performance among them was compared with that of 

only the main frequencies.  

The last modified PSDA was to apply LDA to features 

which were SNR values at the main frequencies and the 

combination of the harmonic frequencies. LDA estimates 

hyperplanes to separate the data of multiple classes. This 

technique has a low computational requirement, suitable for 

the online BCI system [13]. In this study, features for LDA 

were SNRs of the combination of the harmonic frequencies. 

Ten-fold cross validation was used, so every EEG segment 

was randomly divided into ten equal-sized groups. Nine folds 

trained the classifier and the other fold validated it. This step 

was repeated until every fold was used as the validation set. 

BCI performance was estimated as the average accuracy of ten 

validation sets. For the second and third modified PSDA 

methods, accuracy of main frequencies was compared with 

that of the best combination of harmonic frequencies. 

E. Canonical correlation analysis 

For frequency recognition of SSVEPs, the two variables 

(X and Y) are usually an EEG segment and a reference 

signal²sine and cosine of specific frequency. In this study, 

an EEG segment was extracted from every trial as mentioned 

in PSDA. 

Two modified CCA were compared for frequency 

recognition: (1) correlation ranking with a conventional 

reference signal, (2) CCA with a novel reference signal. First 

method used a conventional reference signal for CCA. 

Because it is consisted of sine and cosine at a specific 

frequency, simultaneous multi-frequency recognition is not 

possible. Therefore the reference signal was consisted of sine 

and cosine at each stimulus frequency and its second 

harmonic for the correlation ranking method. We arranged 

the four stimulus frequencies in order of correlation 

coefficient between a corresponding reference signal and an 

EEG segment. For first PSDA method, first two stimulus 
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frequencies with large correlations were compared with four 

stimulus frequency pairs. For example, if reference signals at 

23Hz and 27Hz showed larger correlations with a segment 

than those at 19Hz and 31Hz, the segment was classified as 

class 3. If a pair of the two frequencies was not included in the 

four stimulus frequency pairs, the segment was classified as 

class 0 and considered as a wrong classification.  

Second modified CCA was to use a novel reference 

signal to simultaneously recognize harmonic components of 

dual-frequency SSVEP. Compared with conventional way, a 

novel reference signal was consisted of sine and cosine at 

multiple frequencies²two main frequencies, harmonic 

frequencies, and their second harmonics: 

 

 . 

 

Four reference signals were generated according to the 

class, and four correlations in accordance with the reference 

signals were estimated with an EEG segment. The class with 

the largest correlation was finally chosen, which was the same 

with conventional CCA in a manner of classification method. 

The best performance of the frequency combination was 

compared with the performance of main frequencies. 

F. Statistical analysis 

Classification accuracy was estimated in terms of features 

(SNR and canonical correlation), classification methods 

(ranking, sum, and LDA for PSDA; ranking and using the 

proposed reference signal for CCA), frequency combinations 

(main frequencies and harmonic frequencies), and window 

lengths (1s to 5s). The feature category was to know which 

feature was better for frequency recognition of dual-frequency 

SSVEP regardless of classification method. The frequency 

combination category was divided into using only main 

frequencies and using both main and harmonic frequencies, 

verifying advantage of use of harmonic frequencies. The 

performances were statistically compared using 

repeated-measures analysis of variance (ANOVA) with 5% 

significance level. 

III. RESULTS 

A.  Harmonic frequency 

Peak frequency components were different for targets and 
subjects. For example, spectrum of target 1 of subject 1 
peaked at 19Hz (f1), 27Hz (f2), 35Hz (2f2 í f1), 38Hz (2f1), and 
46Hz (f1 + f2). But spectrum of target 2 of subject 1 peaked at 
19Hz (f1), 31Hz (f2), 12Hz (f2 í f1), 57Hz (3f1), and 62Hz (2f2). 
And spectrum of target 2 of subject 3 peaked at 19Hz (f1), 
23Hz, and 46Hz. Peak frequency components commonly 
found and related to the main frequencies were defined as 
harmonic components of dual-frequency SSVEP. The peaks  
 

TABLE I.  AVERAGE ACCURACIES IN TERMS OF FEATURES, 
CLASSIFICATION METHODS, FREQUENCY COMBINATIONS, AND WINDOW 

LENGTHS 

Category Subcategory 
Average 

accuracy (%) 

Feature 

SNR (PSDA) 57.7 ± 13.4 

canonical correlation 

(CCA) 
69.4 ± 16.8 

Classification 

method 

PSDA ± ranking  31.5 ± 17.6 

PSDA ± sum 62.5 ± 13.0 

PSDA + LDA 66.1 ± 11.9 

CCA ± ranking 60.0 ± 18.5 

CCA with the novel 

reference signal 
74.1 ± 14.0 

Frequency 

combination 

Main frequencies  63.3 ± 13.4 

Harmonic frequencies 71.9 ± 12.8 

Window  

length 

1s  43.7 ± 12.5 

2s 58.3 ± 15.4 

3s 63.9 ± 17.5 

4s 70.6 ± 17.1 

5s 74.1 ± 16.4 

 

appeared at 23Hz and 46Hz in the spectrum of target 2 of 
subject 3 were not related to the main frequencies (19Hz and 
31Hz), thus they were not considered as harmonic components. 
Finally four harmonic frequencies were identified as 2f1 í f2, 
2f2 í f1, f1 + f2, and |f1 í f2|. And sixteen combinations of the 
four harmonic components were employed for PSDA-sum, 
PSDA+LDA, and CCA with the novel reference signal. 

B. BCI performance 

Table 1 shows average BCI performance according to 

four categories and their subcategories. Each value was 

estimated regardless of the other categories, so the standard 

deviation was larger than 10. The accuracy difference 

between features was significant over window lengths (F(4, 

19) = 4.835, p < 0.01); canonical correlation outperformed to 

SNR by 11.6 ± 3.4 %. The accuracies were also significantly 

different according to classification methods over window 

lengths (F(12, 34.686) = 3.182, p < 0.01). )URP�7XNH\¶V HSD 

test, PSDA-ranking method was demonstrated as the worst (p 

< 0.01 between PSDA-ranking and CCA-ranking, and p < 

0.001 between PSDA-ranking and the others).  Correct 

classification rate was higher when using both main and 

harmonic frequencies than using only main frequencies by 

8.6 ± 3.6 % (p < 0.075). Lastly, accuracy was significantly 

different according to window length (F(4, 19) = 82.870, p < 

0.001); as window length increased from 1s to 5s, accuracy 

got increased by 30.4%. 
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Fig. 1.  BCI performance according to classification methods and 

window lengths 

No interaction was found between classification method, 

frequency combination, and window length (F(8, 26) = 0.462, 

p > 0.87). Thus advantage of harmonic frequencies could be 

confirmed for every classification method and every window 

length. In Fig. 1, PSDA using harmonic frequencies always 

outperformed PSDA using only fundamental frequencies; 

CCA showed the same result. Also an increasing trend of 

accuracy according to window length was shown for every 

classification method and every frequency combination (Fig. 

1). 

IV. DISCUSSION AND CONCLUSION 

Five different classification methods were compared for 

multi-frequency recognition of dual-frequency SSVEP: 

PSDA-ranking, PSDA-sum, PSDA+LDA, CCA-ranking, and 

CCA with the novel reference signal. These methods were 

modifications of conventional PSDA or CCA for multiple 

frequency recognition. PSDA-ranking, PSDA+LDA, and 

CCA-ranking accept conventional feature extraction 

approach of PSDA and CCA, slightly different in 

classification step. Among the five methods, the modified 

CCA method was superior to the others. Accuracies were 

much above the chance level (25%), but that of CCA with the 

novel reference signal was higher than the others (p < 0.001 

for PSDA-ranking; p < 0.13 for PSDA-sum and CCA-ranking; 

p < 0.42 for PSDA+LDA). These results inferred that CCA 

with the novel reference²especially using harmonic 

components² would be better than PSDA for dual-frequency 

SSVEP as for single-frequency SSVEP [9]. 

Because conventional PSDA and CCA were used for 

single frequency recognition, modification was required for 

multiple frequency recognition. The proposed methods 

(PSDA-sum and CCA with the novel reference signal) were 

devised to classify multi-frequency SSVEPs at once. The 

conventional PSDA or CCA needed at least eight features for 

four-class classification. Even if all of the features were 

estimated, pattern classification would be hard because 

spectral characteristic of dual-frequency SSVEP changes 

even for the same target. If harmonic components are 

considered, much more features will be needed. However, no 

matter how many frequencies were employed, only N 

features are required to classify N classes for the proposed 

methods. Also all of the harmonic frequencies contribute to 

the frequency recognition in the proposed methods, so the 

method is robust to the change of spectral characteristic (e.g., 

different peak frequencies for the same target).  

The proposed frequency recognition methods were 

performed for frequency-overlapped multiple targets. But if 

single-frequency stimuli were added, another strategy would 

be needed to classify single- and dual-frequency SSVEPs.  
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