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Abstract— Traditional 2-class Motor Imagery (MI) Electroen-
cephalography (EEG) classification approaches like Common
Spatial Pattern (CSP) and Support Vector Machine (SVM)
usually underperform when processing stroke patients’ rehabili-
tation EEG which are flooded with unknown irregular patterns.
In this paper, the classical CSP-SVM schema is improved
and a feature learning method based on Gaussian Mixture
Model (GMM) is utilized for depicting patients’ imagery EEG
distribution features. We apply the proposed modeling program
in two different modules of our online BCI-FES rehabilitation
platform and achieve a relatively higher discrimination accu-
racy. Sufficient observations and test cases on patients’ MI data
sets have been implemented for validating the GMM model. The
results also reveal some working mechanisms and recovery ap-
pearances of impaired cortex during the rehabilitation training
period.

I. INTRODUCTION

EEQG is the recording of the brain’s spontaneous electrical
activity over time. 2-class motor imagery (left and right hand
motor imagery) EEG studies have been widely undertook in
recent years. Accordingly, Brain Computer Interface (BCI)
is applied clinically, providing a new criteria for diagnostics
of neurological disorders such as stroke[1].

In this study, we propose an active BCI-based motor
functional rehabilitation approach to build up a close loop
training paradigm. In this approach, 2-class MI based EEG
recognition techniques are employed to construct a BCI reha-
bilitation training platform for stroke patients[2], combined
with traditional Functional Electrical Stimulations (FES)
therapy as Fig. 1 shows. The system integrates brain activities
on Central Nervous System (CNS) induced by customized
imagery tasks with FES on corresponding muscles, aiming at
helping patients reconstruct the neuroncircuit between paral-
ysis limbs and corresponding pathological brain areas[3].

One of the bottlenecks when implementing MI based
BCI-FES rehabilitation system is that conventional methods
like common CSP cannot provide a convincing classification
accuracy because it may detect a non-optimal orientation for
projection under the impacts of irregular imagery patterns[4].
Plenty of adaptive algorithms have been proposed for im-
provements but they share a common shortcoming that they
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Fig. 1. The framework of our BCI-FES rehabilitation training platform.
GMM will be applied on the feature processing module and classification
module respectively (marked as green).

cannot avoid directly using features which are extracted by
CSP with poor discriminant abilities. In this paper, we visu-
alize the original spatial patterns. Based on observations, we
build a Gaussian Mixture Model for representing this special
kind of mixed features. The model is applied in the pre-
processing module as a filter and the classification module as
a classifier, respectively. The performance is compared with
general CSP-SVM together with an accuracy Upper Bound
(UB) reference provided by One Nearest Neighbor (1NN)
estimation.

The rest of the paper is organized as follows: Section II
provides a brief description about our BCI-FES rehabilitation
system and experiment layout. Section III details the schema
of Gaussian Mixture Modeling on stroke patients’ EEG
classification problem. Section IV demonstrates comparative
results of GMM at the same time puts forward a novel
discovery about the working mechanism of the impaired
(stroke) brain cortex.

II. EXPERIMENT FRAMEWORK

Fig. 1 provides a global view of the framework of our
BCI-FES training system. FES is integrated in the feedback
module that we designed for patients to coordinate the brain
activity with imagery tasks (like lifting cups or balancing
a beam[5]). Sound notifications and other external prompts
have been inserted for improving subjects’ concentration
during training sessions. Multi-modal interfaces such as
camera videos and medical records are reserved for tracking
the whole training process.
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A. Parameters and Paradigm

Raw EEG signals are recorded with sample rate 256Hz by
the 19-channel g.USBamp amplifier which is connected with
19 electrodes distributed on the EEG cap. After removed arti-
facts then detrended and filtered, EEG signals are transferred
into the classification module. It is worth emphasized that we
expand the default alpha and beta band 8-30Hz into 5-40Hz
because a recent study provides an evidence that the Event
Related Desynchronization (ERD) phenomenon of impaired
cortex may cover a wider band in frequency domain than
normal parts[6].

Fig. 2 is a sketch of the training paradigm that we cus-
tomize for training. FES is triggered with a current intensity
20mA in the rehabilitation stage of each subject’ daily
treatment when they get blocked finishing motor imagery
tasks.
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Fig. 2. Rehabilitation training paradigm. FES is triggered when patients
get difficulties finishing imagery tasks.

B. Data sets

Seven stroke patients from Zhejiang Taizhou Hospital
participate in our study. Table I provides clinical diagno-
sis data of 10 patients in 8§ weeks selected from the 3
months’ training, including every week’s Fugl-Meyer Motor
Assessment (FMA) results for measuring motor function
dysfunction[7][8]. The motor imagery EEG of 4 subjects
(with ”*” after their number in Table I), with a better
rehabilitation performance, are chosen as our data set. The
data set consists of 8 weeks’ EEG data for each subject, from
which we randomly select 6-8 sessions per day and 3 days
per week. Each session contains 15 numbers of 4-seconds
trials with different labeled (left and right) motor imagery
and all of the trials are cut into sliding windows with length
Is and step 0.125s. We partition the data into two pieces:
everyday’s first 5 - 7 sessions of EEG as training set and the
last session for testing. The assessment results of a control
group with another 3 patients are also provided in the table.

III. MODEL AND ALGORITHM
A. Common Spatial Pattern

For each segment of EEG data FE(time*channel), it is
projected onto a subspace by the spatial filter matrix V,
which is calculated by CSP as the optimal direction that
distinguish two kinds of mental states. Signals with largest
eigenvalues maximize the difference of variance of left
versus right motor imagery EEG[9]. These signals are the
m first and last rows of Z.

Z=VE )

In our experiment, we choose the first and last two
eigenvalues (m = 4) and after log normalization[10] we get
a 4-dimensional feature X for each window segment:

X = (.’1117.172,.’133,,%4) (2)

Notice that z; and x4 are generated by the largest and small-
est eigenvalues during the transformation, which implies that
they have the best discriminant ability among all the four
features (relatively).

B. Gaussian Mixture Model Classifier

General methods usually put the feature vector X into
a Linear Discriminant Analysis (LDA) or SVM classifier
directly and then obtain classification results. As we have
mentioned before, noises and inaccurate imagery contents
generated by impaired brain regions are difficult to be filtered
by classical noise estimation means, which violates the
assumptions of CSP that only two different imagery states
exist in the space.

The Gaussian Mixture Model are introduced for advanced
feature learning. GMM is a probabilistic model based on
Gaussian distribution for representing the presence of sub-
populations within an overall population[11]. Consider the
main components of the left-labeled (or right-labeled) im-
agery EEG of patients in each dimension of the feature space
where X locates:

X=a1Pi+asP,+e 3)

where o7 and «s are linear combination coefficients. The
first part P; consists of contents that highly fit the outline of
accurate left motor imagery, which should be extracted out as
the most principal component for supervised classification.
These contents scatter around a central point with a gaussian-
like distribution theoretically. The second element Ps is
comprised of some weak left motor imagery patterns (a
little deviation along the standard direction), high-bandpower
noises and wrong (right) imagery. The distribution of P»
differs in people and imagery sessions. But an assertion
is reasonable that P, can be decomposed as the following
equation represents:

M
Py =Y BGi(u,0) “)
k=1

where G, is the k*(k > 0) gaussian component of P;.
Notice that most of G could be ignored because they either
have a low-power (eg. gaussian noise) or hardly can affect
final classification. The rest one e is the permanent tiny
Gaussian noises that we need not take into consideration in
most cases.

Based on the above analysis, Algorithm 1 and Algorithm
2 illustrate the modeling procedures in detail. In the process,
EM algorithm is employed to estimate the combination
coefficients and parameters of each gaussian component[12].
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TABLE I
FMA ASSESSMENT RESULTS OF 10 SUBJECTS

Mean value of each week

Subject  Gender  Age Group st 2nd _ 31d _ &h _ 5th 6t __7th 8

1* Male 74 Experiment group ~ 22.00 22.00 22.00 23.00 24.00 26.00 26.00 26.00
2% Female 65 Experiment group  16.00 16.00 18.00 19.00 34.00 34.00 40.00 42.00
3 Male 71 Experiment group  16.00 16.00 16.00 18.00 18.00 18.00 18.00  20.00
4 Male 65 Experiment group  11.00  11.00 11.00 12.00 12.00 14.00 14.00 16.00
5% Male 67 Experiment group ~ 9.00 12.00 16.00 34.00 3400 36.00 38.00 40.00
6 Male 60 Experiment group  9.00 9.00 9.00 9.00 10.00  10.00  10.00  10.00
7* Female 62 Experiment group ~ 12.00  18.00 20.00 20.00 22.00 26.00 26.00 30.00
8 Male 77 Control group 1200 12.00 12.00 12.00 12.00 14.00 14.00 14.00
9 Male 64 Control group 14.00 14.00 14.00 15.00 16.00 16.00 16.00 16.00
10 Female 62 Control group 16.00 16.00 18.00 18.00 20.00 20.00 22.00 24.00

It should be highlighted that Algorithm 2 directly uses GMM
as a classifier and deduce the classification result of test sets
by comparing two output probabilities.

Algorithm 1 GMM modeling in CSP feature space
Modeling

1: Apply general CSP on the training data sets subject-
independently and get the optimal projection matrix V'
and training features X (dimension * window);

2: Split X into two parts: left-labeled features X and
right-labeled ones Xg;

3: Determine essential modeling parameters:

k - maximum number of Gaussian components allowed;
d - the dimension of the feature space;
4: for Each half part of training feature: X,(p € {L, R})

do

5: fori=1—ddo

6: Initialize EM parameters with k and the iteration
time N, and then begin EM iterations;

7: Get the EM output and construct the mixture model
M;; in the ' dimension of space for m-labeled
data.

8: end for

9: end for

10: Finally we get total 2d number of gaussian mixture
models for the training data sets.

Here c; in Algorithm 2 are assigned with a average value
1/d for simplicity, and the first and fourth feature (z; and
x4, d = 2) which have the best discriminant ability are
selected as our GMM fitting dimensions. For consistency,
we unify M = 1 (in Equation 4) in our experiment so that
the number of allowed gaussian components is fixed to 2,
ignoring residual gaussian noises. Observations in Section IV
also verify that 2 gaussian components are adequate to reflect
the distribution behaviors of most stroke patients’ imagery
EEG in each dimension of the feature space.

Another issue needed to be pointed out is that we choose
to train 2d number of models in every dimension of feature
space and then combine them with linear coefficients instead
of directly constructing the left and right mixture model
in a d-dimensional space. Through priori observations and
attempts on the patients’ EEG data, we find that in a

Algorithm 2 Classification algorithm based on GMM
Classification
1: Extract CSP features T of test data sets by using the
projection matrix V' in Algorithm 1;
2: for Each observation ¢ in 7" do
33 fori=1—ddo
4: Put the *" dimension of ¢ into mixture models M}
and M% and get the output probability P and Pj;
5:  end for
Combinations: the probability that ¢ belongs to left:
P = ijl ¢; x P}, the probability that ¢ belongs to
right: Pr = 2?21 ¢; * P}, where ¢; are the combina-
tion coefficients with the constraint Zj ¢ =1
7. Comparisons: if(Pr, > Pr and Py, > 6), set the label
of t = left; else if(Pr > Pr and Pr > 0), set the
label of t = right; else regard ¢ as a noisy observation,
where 6 is the rejection threshold.
8: end for

high-dimensional space the features concentrated around a
certain point which locates at the periphery (like dimension
curse[13]). The covariance matrix estimated by EM are very
sparse and difficult to handle with.

Actually Gaussian Mixture Modeling based on CSP fea-
tures is a kind of feature learning methods. The above two
algorithms describe how to use GMM as a classifier. Another
scheme we have attempted is to insert GMM into feature
processing procedure to filter out the noisy part of patients’
imagery data by the supervising of its output probabilities,
and then train a more accurate SVM for classification[14].
We will not demonstrate details due to limited space but
we list the comparative results of two implementations in
Section IV.

IV. RESULT AND MECHANISM
A. Classification Results

The proposed modeling algorithm is evaluated as classi-
fication module in our BCI-FES system. Another scenario
we mentioned in Section III is also applied on the feature
processing module of the system separately. For reference,
1-NN error rate bound is carried out on the test data sets[13].
Mean accuracies of the 4 subjects in 8 weeks are computed
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Fig. 3. The distribution histogram of feature x7 after normalization,

including 2-class motor imagery EEG of a normal subject and a patient
in different periods.

and listed in Table II. Experiment results indicate that GMM
based methods stand out in accuracy. It outperforms CSP-
SVM and achieves a high accuracy 77% on subject 2.

TABLE I
MEAN SLIDING WINDOW ACCURACIES (%) OF THE 4 SUBJECTS
CALCULATED BY USING DIFFERENT METHODS

Subject CSP-SVM  GMM Classifier =~ GMM Filter UB
Subject 1 46.39 60.80 58.46 76.48
Subject 2 66.05 77.50 73.12 85.70
Subject 5 63.00 74.73 69.30 81.42
Subject 7 57.04 63.48 65.26 78.21
Mean 58.12 69.13 66.61 —

B. Observations and Mechanisms

Fig. 3 provides a directviewing distribution profile of the
CSP feature in dimension x;. We normalize original features
into (0, 1) in each dimension dividedly and then compute a
mean value for demonstration, which will not change the
relative locations.

It’s obvious that the patterns of normal subjects locates
separately at the two half of the interval, gathering around
two highest center, appearing with a gaussian outline. While
the 2-class EEG features of patients share an overlapping
area in the surroundings of the boundary (middle 2 sub-
figures). Moreover, we observe more than one local max-
imum centers in patients’ EEG in the middle part of Fig.
3, which provides a proof about our assumptions that multi
mixture gaussian components exist. The right part of Fig.
3 displays the normalized features of the same patient at
the last stage of rehabilitation training (the 8th week). An
evident change is observed that the length of overlapping
parts between left and right becomes shorter than before. In
addition, the secondary local peaks attenuate and gradually
approaches the primary center in location. A reasonable sur-
mise about the change is that secondary gaussian components
are generated by impaired cortex during imagery and this

kind of patterns becomes weak, similar with primary patterns
and evanesce at last along with the recovery period gradually.

V. CONCLUSIONS

In this paper, we propose a GMM based feature learning
algorithm. The algorithm constructs several mixture models
in the subspace of CSP features and produce a probabilistic
model for classifying stroke patients’ EEG. We have per-
formed a three-month clinical experiment and validated the
approach on the data sets we collected in Zhejiang Taizhou
Hospital.

A shortcoming of the model is that we have not imple-
mented an auto-adapted algorithm to determine the combi-
nation parameters c;. We also lack some specific methods
to exploit effective information from observations that are
rejected by the threshold. For future work, boosting will be
introduced to learn and regulate the combination weights
in Algorithm 2. Kernel methods are also taken into con-
siderations for mapping CSP features into a kernel space so
that we can construct higher-dimension gaussian components
for better describing the distribution of patients’ imagery
patterns.
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