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Abstract— It has been demonstrated that Brain-Computer
Interface (BCI), combined with Functional Electrical Stimu-
lation (FES), is an effective and efficient way for post-stroke
patients to restore motor function. However, traditional feature
extraction methods, such as Common Spatial Pattern (CSP),
do not work well for post-stroke patients’ EEG data due to its
irregular patterns. In this study, we introduce a novel tensor-
based feature extraction algorithm, which takes both spatial-
spectral-temporal features of EEG data into consideration. EEG
data recorded from post-stroke patients is used for simula-
tion experiments to assess the effectiveness of the proposed
algorithm. The results show that the the proposed algorithm
outperforms some traditional algorithms.

I. INTRODUCTION

Stroke, or cerebrovascular accident (CVA), is a medical
emergency that results in multi-organ dysfunction and can
cause permanent neurological damage and death [1]. For
post-stroke patients, regular daily life and social activities are
severely affected. Effective rehabilitation approaches should
be applied immediately onto patients in order to help them
return to normal life. However, traditional rehabilitation
therapies, such as constraint-induced movement therapy and
speech and language therapy, achieve disappointing results
and poor rehabilitation performances. Poor enthusiasm are
aroused for stroke patients by these boring therapies. Deeply,
active motor control loop between brain and impaired limbs
is not established, and thus it is difficult to reconstruct the
neural circuits on impaired brain cortex.

Brain-Computer Interface (BCI), as a new pathway be-
tween brain and external devices, is an alternative way of
rehabilitation training in the people with disabilities. It has
been proved that BCI, combined with Functional Electrical
Stimulation (FES), is an effective and efficient way for
post-stroke patients to restore motor function [2]. Feature
extraction and classification are crucial for designing a BCI-
based rehabilitation training system. However, traditional
feature extraction methods, such as Common Spatial Pattern
(CSP) [3], can not ensure persuasive performance when
directly applied on post-stroke patients because of irregular
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imagery patterns [4]. Additionally, another issue that few
EEG data is recorded from real patients usually leads to
limited available training dataset, arousing the small sample
size (SSS) problem.

In this study, a robust tensor-based algorithm, namely gen-
eral tensor-based nearest feature line (GTNFL), is introduced
to overcome the above problems. Spatial-spectral-temporal
patterns are taken into account, obtaining an optimal multi-
way discriminative subspace for data projection. Moreover,
the training dataset can be expanded due to the extra virtual
training data, and thus the small sample size problem is better
solved.

The rest of the paper is organized as follows: Section II
gives a brief view of data acquisition based on the BCI-
FES system. Section III presents a detail description of
data processing, especially the GTNFL algorithm for feature
extraction. Section IV lists the comparative results of the
simulation experiments when applying the proposed algo-
rithm and other traditional algorithms on EEG data recorded
from real patients. Finally, Section V gives a discussion of
the results.

II. MATERIALS

A. Stimuli and Procedure

A motor imagery based BCI-FES rehabilitation system
[5] is applied for data acquisition in this study. The whole
rehabilitation process consists of three courses called training
model course, virtual games rehabilitation course and post-
training model course. In the whole experiment, patients sit
still in a comfortable wheelchair with their hands rested on
the armrest. In the training model course, patients have to
participate in the basic motor imagery based tasks for eight
sessions. In each trial, patients are required to imagine for
two seconds based on the direction shown by a bold arrow. In
the virtual games rehabilitation course, patients are asked to
complete five virtual games involving different categories of
daily life. In the post-training model course, patients continue
to finish another two sessions of the basic motor imagery
based tasks, as described in the training model course, for
purpose of rehabilitation efficacy assessment.

B. Data Acquisition

Five post-stroke patients participate in our BCI-FES reha-
bilitation training per day and three days per week, along
with the ordinary medical treatments in the hospital every
day. It takes two months for the patients to complete the
whole training process. Raw data is collected using Ag/AgCl
electrodes from the 16-channel (namely FC3, FCZ, FC5,
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C1-C6, CZ, CP3, CPZ, CP4, P3, PZ and P4) g.USBamp
amplifier (G.tecGuger Technologies, Graz, Austria) with a
sampling rate of 256Hz.

III. METHODS

A. Data Pre-processing

Pre-processing for EEG data is required to improve the low
signal-noise ratio (SNR) before feature extraction. Firstly,
EEG data is spatial filtered through Common Average Refer-
ence (CAR) [6] method. Afterwards, we employ Independent
Component Analysis (ICA) [7] method to remove artifacts,
such as Electrocardiograph (ECG) and Electromyography
(EMG), from EEG signals. Furthermore, EEG signals are
bandpass filtered within the specific frequency band 4-45Hz,
aiming at extracting the most active rhythms related to
motor imagery for post-stroke patients. Finally, with time-
frequency decomposition methods, EEG data is converted
into the format channel*frequency*time (16 channels; 4-45
Hz; 1-2000 ms). In our study, wavelet transform method is
chosen as the time-frequency decomposition method and the
complex Morlet wavelet is utilized as the mother wavelet, as
it is successful in the analysis of time-frequency information
of EEG data.

B. Feature Extraction and Classification

General tensor-based nearest feature line (GTNFL) algo-
rithm is proposed to extract features of EEG data recorded
from post-stroke patients in this section. Support vector ma-
chine (SVM) [8] classifier is used as classification method.
Some basic tensor operators are presented firstly in the
following subsection.

(1) Tensor Operators

Tensors, as multi-dimensional arrays, present
the linear relations between vectors, scalars and
other tensors. The contracted product of two
tensors X ∈ RN1×N2×···×NM×Q1×Q2×···×QD and
Y ∈ RN1×N2×···×NM×S1×S2×···×SP along the first M
modes is denoted as Z = [[X ⊗ Y; (1 : M)(1 : M)]] ∈
RQ1×...×QD×S1×...×SP . Especially, contracted product of
X and Y on all indices except the k-th index is denoted
as [[X ⊗ Y; (k)(k)]]. The mode-d product of a tensor
X ∈ RN1×N2×···×NM and a matrix P ∈ RJd×Nd is a tensor
Y = X×dP ∈ RN1×...×Nd−1×Jd×Nd+1×...×NM . Moreover,
matd(X) ∈ RId×I1...Id−1Id+1...IM stands for the mode-d
matricization of the tensor X.

(2) GTNFL for Feature Extraction

Suppose x1 and x2 are two 2-dimensional points, a line
passing through x1 and x2 is defined as Feature Line (FL),
as described in [9]. As a natural extension of the traditional
definition, we define Multi-dimensional Feature Line (MFL)
X̃1X2 as a line passing through two high-dimensional points
X1 ∈ RI1×I2×···×IM and X2 ∈ RI1×I2×···×IM sharing
the same label. Suppose X∗ is the projection of X onto
X̃1X2, FL distance between X and X̃1X2 is expressed as
the Euclidean distance between X and X∗.

Given the training dataset
{
XI1×I2×...×IM

i;j

}
, where

XI1×I2×...×IM
i;j denotes the j-th point in the i-th class with

1 ≤ i ≤ C and 1 ≤ j ≤ Ni, the mean point for the i-th class
is Mi = (1/Ni)

∑Ni

j=1 Xi;j . For each point Xi;j , the number
of MFLs, formed by the mean point Mi and the other points
sharing the same class with Xi;j , is Pi;j . Afterwards, we use
{X∗

i;j;1,X
∗
i;j;2, . . . ,X

∗
i;j;Pi;j

} as all the projections of Xi;j

onto all the above MFLs. Extra virtual points, like these
projections, are generated, and thus the training dataset is
enlarged. We define the within-class FL distance between
Xi;j and all its projections as

∑Pi;j

p=1 d
2(Xi;j ,X

∗
i;j;p), where

X∗
i;j;p is the p-th projection of Xi;j . Furthermore, the within-

class FL distance between all the points in the training set
and their projections is expressed as:

Jwithin =
C∑
i=1

Ni∑
j=1

Pi;j∑
p=1

d2(Xi;j ,X
∗
i;j;p) (1)

Similarly, the between-class FL distance between all the
points and their projections is expressed as:

Jbetween =
C∑
i=1

Ni∑
j=1

Qi;j∑
q=1

d2(Xi;j ,X
∗
i;j;q) (2)

where Qi;j is the number of the MFLs formed by the mean
point Mi with 1 ≤ i ̸= i ≤ C and all the points Xi;j with
1 ≤ j ≤ Ni. X

∗
i;j;q is the q-th projection of Xi;j onto the

corresponding MFL. Fig. 1 gives a brief view of the concept
of within-class FL distance and between-class FL distance.

The aim of GTNFL algorithm is to find a set of pro-
jection matrices

{
W(d) ∈ RId×Ud , Ud ≤ Id

}M

d=1
, by which

original EEG data Xi;j can be projected to Yi;j =

Xi;j

M∏
d=1

×dW
(d)T ∈ RU1×U2×...×UM . These matrices,

which are optimal for distinguishing different classes, can
project original data in a low dimensional space in which the
within-class FL distance is minimized and the between-class
FL distance is maximized. Therefore, GTNFL algorithm can
be converted to the following optimization problem:

f(Wd|Md=1) = argmin
1

Kin

C∑
i=1

Ni∑
j=1

Pi;j∑
p=1

d2(Yi;j ,Y
∗
i;j;p)

− 1

Kbet

C∑
i=1

Ni∑
j=1

Qi;j∑
q=1

d2(Yi;j ,Y
∗
i;j;q) (3)

where Kin =
C∑
i=1

Ni∑
j=1

Pi;j and Kbet =
C∑
i=1

Ni∑
j=1

Qi;j . Yi;j is

the projection of Xi;j by
{
W(d)

}M

d=1
. Y∗

i;j;p is the p-th
projection of Yi;j onto the corresponding MFL. Similarly,
Qi;j and Y∗

i;j;q represent corresponding parameters of the
between-class FL distance.

However, optimization problem in equation (3) does not
have a closed form as M parameters need to be determined in
one function. Therefore, the alternative least square (ALS)
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Fig. 1. A brief view of the concept of within-class FL distance and between-
class FL distance. Different dots with different colors share different classes.
Within-class FL distance is defined as the sum of the distance between data
T and all its projections onto the MFLs formed by the mean point MT

and T1, T2, T3. Similarly, the between-class FL distance is the sum of the
distance between data T and all its projections onto the MFLs formed by
the mean point MS and S1, S2, S3.

method is applied to decompose the optimization problem
into several optimization subproblems, obtaining a numerical
solution. As the optimization function defined in equation (3)
is only determined by d2(Yi;j ,Y

∗
i;j;p) and d2(Yi;j ,Y

∗
i;j;q),

we just reform d2(Yi;j ,Y
∗
i;j;p) as follows:

d2(Yi;j ,Y
∗
i;j;p)

= d2(Xi;j

M∏
d=1

×dW
dT

,X∗
i;j;p

M∏
d=1

×dW
dT

)

= [[(Xi;j

M∏
d=1

×dW
dT

)⊗ (Xi;j;p

M∏
d=1

×dW
dT

);

(1 : M)(1 : M)]]

= [[(Xi;j×m WmT

×mWmT

)⊗ (X∗
i;j;p×m WmT

×m

WmT

); (1 : M)(1 : M)]]

= tr{WmT

[[(Xi;j×m WmT

)⊗
(X∗

i;j;p×m WmT

); (m)(m)]]Wm}

Similarly, d2(Yi;j ,Y
∗
i;j;q) can be re-expressed in the same

form as d2(Yi;j ,Y
∗
i;j;p). Therefore, new expressions of

d2(Yi;j ,Y
∗
i;j;p) and d2(Yi;j ,Y

∗
i;j;q) are put into equation

(3), we can get:

f(Wm) = argmin tr
(
WmT

(Am −Bm)Wm
)

(4)

where Am and Bm are defined as:

Am =
1

Kin

C∑
i=1

Ni∑
j=1

Pi;j∑
p=1

[[
(Xi;j×m WmT

)⊗
(X∗

i;j;p×m WmT

); (m)(m)

]]

Bm =
1

Kbet

C∑
i=1

Ni∑
j=1

Qi;j∑
q=1

[[
(Xi;j×m WmT

)⊗
(X∗

i;j;q×m WmT

); (m)(m)

]]
Thus, the optimization problem defined in equation (4) is
only determined by one parameter Wm. After setting partial

derivative of Wm to zero, we get the optimal Wm as the
Um unit eigenvectors based on the smallest Um eigenvalues
of (Am − Bm). The algorithm will stop running if the

convergence condition
M∑

m=1
∥Wm

t −Wm
t−1

∥∥ < ε is satisfied,

where ε is the threshold to test convergence.
IV. RESULTS

200 EEG trials (100 trials for each class) are extracted
from EEG dataset recorded from each patient for each day.
The training dataset is consisted of the first 60 trials (30 trials
for each class) and the other 140 trials are used as test dataset.
GTNFL algorithm is applied for feature extraction, together
with the obtained optimal discriminative subspace by which
the original data Xi;j is projected to Yi;j ∈ RU1×U2×...×UM .
Furthermore, we apply fisher score [10] as the redundant
features elimination method. In our study, we just assess
the performance of the proposed GTNFL method from two
aspects of the obtained optimal discriminative subspace and
recognition rate.

A. Optimal Discriminative Subspace

We just choose two days (day 30 and day 60) during
the rehabilitation period to obtain the comparative results
and assess GTNFL algorithm when compared with some
traditional algorithms. Fig. 2 gives a brief illustration of the
optimal subspace extracted by GTNFL algorithm on day 30
and day 60 for the second patient. In each spatial pattern on
day 30, it is obvious that C3 is the most significant channel
for imagining right while the left movement imagination is
focused at channel CP4 and P4. In terms of spectral patterns,
the two most remarkable bands are around 7-13 Hz and 20-
30 Hz. Moreover, in each spatial pattern on day 60, C3 and
C4 are the primary channels for imagining left and right. For
spectral patterns on day 60, 6-14 Hz and 15-26 Hz are the
two most reactive bands.

CSP, which relies on physiological phenomenon of event-
related desynchronization (ERD), can calculate the most
discriminative spatial patterns of bandpass filtered EEG data.
In Fig. 3, for CSP, the first two most significant spatial
patterns have no discrimination when distinguishing left
imagination from right imagination. As the most active fre-
quency bands contributing to ERD of post-stroke patients are
not available in advance, CSP is not effective for extracting
features of EEG signals from post-stroke patients. However,
GTNFL algorithm has a better performance without the
neurophysiologic knowledge, as it calculates discriminative
spatial patterns and reactive frequency bands directly from
multi-way EEG signals.

B. Recognition Rate

Five traditional algorithms of power spectrum density
(PSD) [11], CSP, regularized CSP (RCSP) [12], wavelet
transform (WT) [13] and nonnegative multiway factorization
(NMWF) [14] are implemented on the dataset for com-
parison. Six weeks out of two months (three weeks per
month) are chosen for each patient. Afterwards, classification
accuracy on test dataset of each experiment in each week is
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Fig. 2. The optimal subspace extracted by GTNFL for projection on day
30 and day 60 for the second patient .

Day 30 Day 60

Fig. 3. The optimal subspace extracted by CSP for projection on day 30
and day 60 for the second patient.

computed using the trained SVM. Finally, mean accuracies
of the six weeks are calculated for all the patients.

TABLE I
MEAN ACCURACIES (%) OF THE SIX CHOSEN WEEKS USING GTNFL AND

THE FIVE OTHER TRADITIONAL METHODS FOR FEATURE EXTRACTION.

Subject PSD CSP RCSP WT NMWF GTNFL

1 48.35 59.70 60.46 61.93 65.71 71.64
2 60.05 57.60 59.10 63.85 67.95 76.52
3 45.83 57.20 59.30 65.68 65.56 75.36
4 50.11 53.48 55.36 51.88 59.78 68.17
5 56.92 57.90 58.51 59.81 64.45 66.64
Mean 52.25 57.18 58.55 60.63 64.69 71.67

Table I lists the results of mean accuracies of our pro-
posed GTNFL algorithm and the five other methods. For
each patient, mean accuracy of the six chosen weeks for
GTNFL algorithm is obviously higher than that of the other
algorithms. On average of all the patients, mean accuracies
can not exceed 70% for the traditional five algorithms while
GTNFL achieves an improvement to 71.67%. Meanwhile,
the same accuracy improvement is found in each individual.
These results verify that the performance of GTNFL outper-
forms the other traditional algorithms.

V. DISCUSSION

The results show that GTNFL algorithm outperforms
the five other traditional feature extraction algorithms. As
GTNFL calculates the optimal subspace directly from multi-
dimensional data, structural information and correlation are
kept in the original data, and thus the diverse EEG data is
well-represented by the the extracted features. Additionally,
the small sample size problem is better solved due to the

expanded training dataset through the generated virtual data.
As a consequence, there is a significant improvement in
performance for GTNFL algorithm.

VI. CONCLUSION

In this study, a robust feature extraction algorithm, namely
general tensor-based nearest feature line (GTNFL), is pro-
posed to calculate the optimal projection subspace based on
multi-dimensional EEG data. We evaluate GTNFL algorithm
based on the EEG datasets recorded from post-stroke pa-
tients, compared with five other classical algorithms. The
results show that the proposed algorithm outperforms the
other algorithms and is efficient in discrimination of EEG
signals for post-stroke patients.
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