
  

  

Abstract—Brain computer interface (BCI) technique is 

successfully utilized to bridge the interruption between brain 

and peripheral nerves and muscles, and to establish a new 

pathway making brain directly output information (or 

command). Up to now, a majority of BCI systems are 

developed to restore communication ability or movement 

functionality for people with severe disabilities, especially for 

paralyzed patients. To our best knowledge, other researchers 

haven’t developed a multi-person BCI with competitive mode. 

Therefore, in this paper, we introduced a multi-person car 

racing system, which allows more than one person to play game 

at the same time and they can compete with each other for the 

aim of first reaching destination. The reason of development of 

car racing system has two aspects. At one hand, we introduced 

BCI to entertainment industry and provided a prototype for 

entertainment. At the other hand, we proposed a competitive 

mode for BCI. According to practical evaluation, the results 

demonstrated that our proposed system achieved a good 

performance. 

I. INTRODUCTION 

By the past decades of years, brain computer interface 
technique has been advanced significantly. More and more 
researchers coming from different disciplines engaged in BCI 
research and contributed their efforts. Up to now, a lot of BCI 
systems have been developed for a variety of application 
purposes. For example, researchers at Graz university of 
technology have developed an EEG-based neuro-prosthesis 
by which a patient was able to grasp a simple object, and then 
release it after moving it from one place to another place [1], 
and a system integrated with functional electrical stimulation 
(FES) by which a tetraplegic patient could grasp a cylinder 
with the paralyzed hand through the control of beta 
oscillation signal [2]. Their laboratory also built a BCI 
system walking in virtual environments, such as virtual 
national library [3] and virtual scene [4]. The former allows 
user to explore in a virtual national library, and the latter lets 
user ramble in a typical virtual outdoor environment with tree 
and hedge. In addition, McFarland D. J. and his colleagues 
have established a cursor system, which is controlled by mu 
(8-12 Hz) rhythm using electrodes placed on the scalp [5]. It 
finished to move a cursor from the center to one of potential 
targets located at the top and bottom edges, respectively. In 
2010, they complicated the cursor system and extended 
two-dimensional control to three-dimensional control [6]. 
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Each dimension (i.e. vertical, horizontal, depth) movement is 
controlled by independent signal. User needs to modulate 
brain activities simultaneously for three-dimensional control. 
Moreover, they designed a typing system based on P300 
signal, which appears when an occasional stimulus occurs in 
a series of stimuli (named oddball paradigm). This system is 
incorporated into the famous BCI 2000, which includes 
signal-processing methods, operating protocols and so forth 
[7]. Additionally, the BBCI group achieved motor imagery 
based typing system, called “Hex-o-Spell” [8]. All symbols 
(26 English letters plus punctuation marks) are divided into a 
set of small groups. User selects a symbol expected to output 
through hierarchical selection till an impartible unit. The 
BCMI laboratory designed an assistive wheelchair system, 
which is directly steered by thoughts [9]. Shangkai Gao and 
her research team developed dialing system using steady state 
visual evoked potential (SSVEP), with which user can select 
desired number by focusing on that number on the flickering 
panel. 

All systems mentioned above are developed as a tool, 
which could help paralyzed or severely disabled people 
restore the abilities of communication with external world or 
augment their remained motor function to better control of 
their limbs. We should pay attention to entertainment 
requirement of those people except enhancing their 
independence of living. Besides, those systems are used for 
one user and lack of motivation from opponent. In order to 
compensate the absence of such BCI system, we developed a 
multi-person car racing system, by which more than one 
person may play the game at the same time and they may 
compete with each other to first reach the destination. Our 
system is not only for patients, but also for healthy people. It 
provided a recreational BCI prototype, which has a positive 
effect on entertainment industry. And our developed system 
shows a new BCI paradigm with competitive mode, which 
allows users to make a competition.�

II. SYSTEM FRAMEWORK 

A. Instruments Connection  

In multi-person car racing system, a g.USBamp amplifier 
(Guger Technologies, Austria), two EEG caps with some 
electrodes, a desktop computer with 22-inch screen compose 
the hardware configuration. Fig. 1 illustrated connection 
relationship between them. There are totally four groups of 
input ports in an amplifier. We grouped two groups of input 
ports together to form a big group for one player. As shown 
in Fig. 1, ground ports and reference ports in a big group are, 
respectively, connected as one ground and one reference. 
Ground electrode is set on the medial frontal cortex, and 
reference electrodes are placed on bilateral earlobes. EEG 
signals are recorded from sensorimotor cortex. Real-time 
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recorded EEG signal is transmitted to desktop computer by a 
USB cable. BCI model analyzes the received EEG signal and 
makes a classification, which is as input signal for application 
program interface (API). API, here, serves as a mapping that 
classification output coming from BCI model is translated 
into a control command used to control corresponding virtual 
car in the game (Game is modified from MultiRacer 
originally developed by Franticware to suit our application 
requirement). Computer displayer shows feedback of car 
status in real-time. 

 

Figure 1.  Hardware connection relationship. Electrodes on the 

sensorimotor cortex are used for recording EEG signals, grounded at 

electrode on the medial frontal cortex and referenced at electrodes on the 

bilateral earlobes. Two small groups are grouped together to form a big 

group of input ports for a player. Classification of EEG signal is translated 

into control command for driving virtual car and computer displayer shows 
feedback of car status in real-time. 

B. Control Manner 

Different motor imageries are adopted to elicit different 
expression in brain activities. It caused spectral power 
difference, especially in subband of alpha. Left, right arm 
motor imageries and feet motor imagery are chosen to control 
car making left turning, right turning, and going forward, 
respectively. For the turning commands, a forward force 

component is added to keep car move forward. We required 
participants to imagine arm movements due to that the 
performance of arm imagination is good for the most of 
people according to our previous experience [10]. 
Additionally, motor imagery has an advantage of self-paced 
modulation. This point is important for development of 
recreational BCI, and is necessary for good user experience. 

C. Parameter Settings of Online Testing 

All parameters used for practical online testing are listed 
in the table 1. The length of EEG segment used for feature 
extraction is 1000 ms (sliding window width). The window 
slid forward every 125 ms. Classifier outputted a classified 
result after each sliding. After one second, all probabilistic 
outputs within this one-second are averaged to generate final 
probabilistic values for each class of motor imagery. The 
class with highest probabilistic value is considered as control 
command. Whether this command is outputted depends on its 
probabilistic value (outputting if the value exceeds 
predefined threshold). 

TABLE I.  PARAMETER SETTINGS FOR PRACTICAL ONLINE TESTING. L,       
R, AND F STAND FOR LEFT, RIGHT, AND FEET MOTOR 

IMAGERIES,  RESPECTIVELY. 

Parameter Configuration 

Sampling Rate 256 Hz 

Filtering Band 8-30Hz 

Recording Electrodes 

Player 1: FC3, FCz, FC4, CP3, CPz, 
CP4 

Player 2: C3, Cz, C4, CP3, CPz, 
CP4 

Threshold for Noise Detection 100 µV 

Feature Extraction CSP+Band Power 

Classifier Linear SVM 

Sliding Forward Step 125 ms 

Sliding Window Width 1000 ms 

Command outputted Rate 1000 ms 

Period Used for Voting 1000 ms 

Voting Strategy Averaged 

Thresholds for outputting 
Command 

Player 1: L=0.9 R=0.9 F=0.85 

Player 2: L=0.85 R=0.9 F=0.8 

 

III. NEURAL MECHANISM 

Different motor imageries cause changes of oscillation 
spreading across the whole scalp. For instance, left motor 
imagery leads to a desynchronized phenomenon on 
sensorimotor cortex of contralateral hemisphere. Fig. 2 shows 
spectral power of three typical channels located on 
sensorimotor cortex. Spectral power drawn in Fig. 2 is 
obtained by averaging powers between 8 Hz and 12 Hz 
(alpha band), which is considered as the most important band 
relevant to motor imagery. From the Fig. 2, we can see that 
spectral power of left motor imagery is higher than that of 
right motor imagery at the channel CP3 across time. Spectral 
power is adverse at the channel CP4.  
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Figure 2.  Spectral power at electrodes CP3, CPz, and CP4. Blue, red, 
black lines, respectively, represent left, right, and feet motor imageries. 

IV. METHOD 

Mixed EEG signals simultaneously recorded from two 
players were first separated according to channel labels. The 
first six channels were for player 1 and channels from the 
ninth to the fourteenth were for player 2. And then, this EEG 
segment was preprocessed. In our system, preprocessing 
procedure is very simple, only including bandpass filtering 
(8-30 Hz) and noise detection. Noise, such as EMG, EOG, is 
detected by checking if averaged amplitude of signal exceeds 
threshold. The reason why preprocessing is so simple is to 
ensure good instantaneity of system. In the step of feature 
extraction, we employed common spatial pattern (CSP) [11] 
to extract the most discriminative spatio-temporal features, 
and combined features of spectral power of subband to form 
final features [12]. Final features are fed to support vector 
machine (SVM) [13] for classification. 

 CSP is proposed for processing problem of two classes. 
In the case of three classes, we utilized a manner of one 
versus the rest. Namely, other two classes are treated as the 
same class when one class is chosen. In this way, we 
employed three CSP extractors to transform three-class 
problem to three two-class problems. The sum of spatial 
covariance of two populations of EEG is written as 
followings:  
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Where E
X

 and E
Re st

 represent segments of chosen 

class and all other segments of the rest classes except chosen 

class, respectively. n
X

 and n
Re st

 are respectively the 

number of segments of chosen class and the number of 
segments of the rest classes. After whitening transformation, 

C
Sum

 can be rewritten as 
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               (2) 

From Eq. (2), we can see that one class has a large 

eigenvalue in !
X

 while the rest classes have a small 

eigenvalue in !
Re st

 due to the sum of their eigenvalues is 

always equal to one. Therefore, 2m  eigenvectors coming 
from the m largest and m smallest eigenvalues span a 
projection space which will be maximal for EEG population 
of one class and minimal for EEG population of the rest 
classes at the same time. According to this principle, three 
extractors, respectively assigned to each class of motor 
imagery, were generated. And then, we respectively 
combined features derived from three CSP extractors with 
band power features to form three sets of new features, which 
were respectively used for training corresponding SVM 
classifier. During real-time classification, an EEG segment 
(one second width, updated every 125 ms) was extracted to 
obtain features by three CSP extractors. Subsequently, SVM 
classifier was used to recognize features coming from 
corresponding CSP extractor. Three SVM classifiers output 
probabilities for each class of motor imagery. In order to let 
the sum of probabilities of all classes be as one, we 
normalized outputted probabilities and got the final 
classification label for which there was the highest 
probability. 

V. PERFORMANCE EVALUATION 

A. Participants 

There are two students (both male) recruited from 
Shanghai Jiao Tong University attending evaluation of car 
racing system. As they claimed, they haven’t had any 
neurological or psychiatric disease, and are right handed. 
Their ages are both 22. They gave their informed consent for 
attending system evaluation after understanding each step 
they should engage in the evaluation. 

B. Evaluation Surroundings 

Evaluation of car racing system was conducted in a 
32-square meters room. Subjects were seated in chairs with a 
posture making themselves comfortable. A 22-inch computer 
displayer was placed in front of them.   

C. Evaluation Procedure 

Whole evaluation was divided into two phases: cue-based 
accuracy evaluation and practical evaluation. Both of phases 
are conducted in the manner of online. There was a phase of 
driving practice between accuracy evaluation and practical 
evaluation, which took five minutes for each participant. 
Before accuracy evaluation, there was a training phase, 
during which participants learnt to modulate their brain 
activities to finish as high accuracy as possible. This training 
phase spent half an hour. Subsequently, an accuracy 
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evaluation was followed to quantify performance. The 
protocol used in accuracy evaluation is the same as training  

TABLE II.  THE RESULTS OF ACCURACY EVALUATION. 

Participants 
Session 

Sequence 

Sliding Time 
Window 
Accuracy 

Trial 
Accuracy 

Player 1 
1 74.72 80 

2 87.78 100 

Player 2 
1 88.33 100 

2 78.48 94 

Mean  82.33 93.5 

 

phase. At the beginning of each trial, a cue indicated what 
motor imagery should be imagined in this trial is presented at 
the center of screen. During the period of imagination, 
continuous increasing-bar feedback is given to guide 
participant to modulate better [14]. The interval between 
trials is two seconds, and fifteen trials compose a session. A 
trial is four seconds long and divided into 25 sliding time 
windows through a window with width of 1000 ms slides 
forward every 125 ms. At accuracy evaluation phase, two 
sessions for each participant were finished. The results of 
accuracy evaluation are listed in table 2. Player 1 finished 
accuracies of 74.72% and 87.78% for sliding time windows 
and 80% and 100% for trials in the first and second sessions, 
respectively. Player 2 finished slightly better accuracies than 
that of player 1. On average, the accuracy of sliding time 
windows is 82.33% while the accuracy of trials is 93.5%.  

 

Figure 3.  (A): A scene of driving practice for single person (B) Two 

players respectively controlled crresponding cars by three different motor 

imageries, and competed with each other. (C) A picture closely shows game 

environment.  

A phase of driving practice was followed after accuracy 
phase. Fig. 3 (A) shows a scene, in which a player practiced 
in single person mode for enhancing skill of EEG-based 
driving. Fig. 3 (B) and (C) show that two players 
simultaneously paly the game and respectively control 
corresponding virtual car at the same time by motor imagery. 
This practical evaluation demonstrated that our multi-person 
car racing system realized that more than one person 
simultaneously control corresponding cars by EEG signals, 
and achieved a good performance. The complete video of 
practical evaluation can be found at 
http://bcmi.sjtu.edu.cn/eegbicar.html.  

VI. CONCLUSION 

This paper introduced a multi-person car racing system, 
which allows more than one person simultaneously to play 
the same game by EEG signals, and players may compete 
with each other. The target users of the proposed system are 
not only patients, but also healthy people. This is an attempt 
of extending BCI technique to the field of application of 
healthy people. In addition, a new paradigm, namely 
competitive BCI, is contained in the system. This paradigm 
might be transferred to other BCI applications which require 
a motivation. For example, competitive paradigm used for 
BCI model training would highly motivate participants to 
engage in training better. Training effect might be improved 
by integrating this competitive paradigm.  
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