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Abstract— In this paper, development of a linear model of a 

neuron/synapse, along with a method for its parameter 

optimization is addressed. Spike input and output was assumed 

in  the model. The developed system was utilized for modeling 

behavior of a single cell hippocampal neuron. Utilizing this 

method, the model's parameter was adapted to reproduce cell's 

output using the same input spike train which was applied to 

the hippocampus cell. The results showed that the EPSP and 

spiking patterns of the hippocampus cell's output can be 

reproduced by 96% accuracy employing approach of this 

study. Due to simplicity of the proposed system, modeling of a 

large scale network can be easily achieved. Results of a 

simulation study for a case when there are 80 synapses is 

provided. 

I. INTRODUCTION 

Neurons along with synapses are the computational 

building units of human nervous system. In particular, 

synapses play significant role in generating neurons response 

to a stimuli or series of stimulus. It is well studied that 

depending on temporal pattern of stimulus, dynamics of a 

synapse changes by forming short and long term substrates 

for synaptic response [1, 3, 4, 5]. There are many researches 

published on mathematical modeling of synaptic response 

considering different aspects of neural cells. The models 

have considered cellular chemistry, ionic channels property, 

synaptic transmission, and electro-chemical properties in 

response to stimulus under different spatial-temporal 

condition of  synapse and its counterpart neuron. In 

summary, while some of the presented models, detail 

biological plausibility, the others focuses on computational 

efficiency. No need to mention that in all of these models 

nonlinear properties of synaptic responses are 

mathematically described by utilization of nonlinear 

equations. 

In the field of neural engineering in general and 

biomimetic devices for enhancing functionality of impaired 

hippocampus in particular, there are many challenges 

ranging from developing computational platform for 

executing mathematical models for processing signals to 

materials interacting with live cells. This paper focuses only 

on mathematical modeling and computational challenges 
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concerning biomimetic hippocampal devices.  Three major 

topics are covered in this paper:   

a) Model of synapse/neuron. Previously published 

mathematical models of synaptic transmission are nonlinear 

rendering adjusting their parameter for input-output 

modeling of hippocampal neurons/synapses to be infeasible 

utilizing of-the-shelf optimization algorithms. The nonlinear 

properties of synapse/neuron models for spiking stimulus 

makes it extremely difficult not impossible for tuning the 

models parameters. This is because nonconvexity of 

dynamical models provides unpredictable convergence time, 

and non unique solution for the problem in hand. Though, 

mathematically a nonlinear system can be replaced by an 

infinite order convex/concave system, Yousefi et al [2] 

showed that nonlinearity in synapse/neuron can be replaced 

by a finite order linear model system without degradation of 

synapse/neuron response performance. Yousefi et al linear 

model of synapse/neuron incorporated a set of linear 

differential equations with the order of Eight. Albeit the 

model increased computational cost of the model, it has 

provided a convex synapse/neuron model offering 

predictable training time. The hippocampal synapse/model 

model of this study is based on linear system introduced in 

[2] which will briefly described in section II. 

b) Measuring closeness of spiking signals. Measuring 

quality of spike-in spike-out model for processing 

hippocampal signals requires an objective function with 

which similarity between output of live cells and output of 

the model is compared. Due to spiking nature of system's 

inputs and outputs of the system, one-to-one comparison 

between spiking signals does not provide meaningful 

similarity measure. Thus some of previous researches have 

been focused on similarity measurements derived 

from temporal distribution of the spikes  i.e. rate of spike. 

Another approach is to form a comparison measure based on 

neuron's membrane potential at the time of spike. Since at 

the time of spike membrane potential must be above firing 

threshold and at any other times the cross membrane voltage 

should stay below firing threshold therefore similarity 

measure function based on the mentioned two constraints 

provides a convex representation of closeness of desired and 

target spiking outputs. In this paper, measuring closeness of 

two spike train is addressed by development of convex 

objective function which is based on fully or partially 

observed membrane potential. 

c) Model Predictive Control method for estimating 

parameters of the model  s  employing experimental data  s  has 

been utilized [7]. A single layer spike-in spike-out model of 

hippocampus is proposed and training algorithm is 

formulated for estimating unknown parameters of the model. 

Efficiency of the model and training algorithm is explored 

through two examples. In the first example, a model with 
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known parameters is  assumed and data is generated based on 

the model. It is demonstrated that the proposed training 

method can estimate the free parameters of the model given 

input-output data. The second example considers a realistic 

scenario by utilizing data recoded from a rat brain's 

hippocampus. A single layer neural model for the data is 

assumed and model's parameters are estimated. 

II. METHODS AND ALGORITHMS 

A. Facilitation Depression Model and its Linearization 

In modeling level, Facilitation-Depression - FD - model 
of synapse dynamics proposed by Tsodyks et al [5] and 
Dittman et al [3] was employed. The model is a lump sum 
description of synaptic mechanisms and in general the model 
predicts synapse output to be highly correlated with 
multiplication of facilitation and depression factors. Synapse 
by FD model can be described by: 

ò(ç òP¤ L F :(ç F (4; ìÙ¤ E :sF (ç; Û ¿( Û ÜkP F PÔão (1) 

ò0ç òP¤ L F :0ç F s; ìå¤ F (ç6 Û 0ç Û ÜkP F PÔão (2) 

ò)ç òP¤ L F)ç ìÚ¤ E 0àÔë Û (ç6 Û 0ç Û ÜkP F PÔão (3) 

ò-ç òP¤ L F-ç ìÞ¤ E 0àÔë Û (ç6 Û 0ç Û ÜkP F PÔão (4) 

8ç L )ç F -ç (5) 

where Ft is facilitation dynamics in response to input spikes 
i.e. APs, and 0ç is the portion of release-ready vesicles. )ç 
and -ç describes Ù-synapse function for PSP - 8ç - emerging 
from released vesicles. The derived equation for PSP consists 
of (ç6 Û0ç term making PSP to be non-linearly dependent to 
the state variables of the synapse stated in the equations 1 
through 5. The approach presented in [2] was utilized to 
generate linear space model for the synapse. In summary, the 
discrete linear synapse can be described by the following 
difference equations: 
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In the equations (6)-(8), Xn is the synapse state space 
vector consisting of Fn facilitation, Ln a slack variable, Nn 
vesicles ready for release, Rn, Qn, Mn, and Hn slack variables, 
Gn, and Kn PSP related variables. Vn is the neuron's 
membrane potential. 

Membrane potential of a neuron is the summation of PSPs 
caused by individual synapses. A neuron fires an action 
potential if it is not in the refractory period and if its 
membrane potential is above firing threshold. This can be 
modeled by the following equations: 
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The simulation results of the study show that the linear 
(approximate) model of the synapse does not impose any 
error if the time gap between input APs exceeds 3 msec. In 
addition the error between the output of approximate and 
non-approximate models is less than 5% when time interval 

between input APs are less than 3 msec. Linear properties of 
the approximate model in addition to its high performance 
makes it a strong candidate for processing large scale neural 
signals. In general, tuning parameters of nonlinear model of 
synapse/neuron is achieved in an unpredictable time; 
parameters of the stated linear approximate model can be 
estimated for input-output modeling of neural activities in a 
very short and predictable time. 

B. Model Predictive Control method for parameter 

estimation 

The synapse/neuron model presented in the previous 
section provides linear state space model of the combined 
synapse and neuron dynamic behaviors. However spiking 
property of input and the output of the model renders 
parameter estimation of the model to be a complex task. In 
order to address parameter estimation of the model two 
scenarios are considered: 

1. EPSP of the post-synaptic neuron is known 

In this scenario, since the states of the model are fully 
observed therefore parameter estimation of the model 
becomes a fitting problem and it can be solved by Model 
Predictive Control  s  MPC  s  method. It worth mentioning 
that if EPSP has been observed over the time period of T, 
then Nm number of unknown parameters can be estimated by 
solving Ns×T set of linear equations. There is also a need for 
implicit conditions which guarantees the membrane potential 
of the neuron is above firing threshold at time of spikes. 
Therefore: 

minimize  1 L �Ã B:T:P;;�
á@4  (13) 
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In the equation (13) the objective function O is replaced 
with a non zero number which converts the estimation into a 
feasibility problem. 

2. EPSP is only observed at the time of firing  

Second scenario is when EPSP is not fully observed and 
rather it is only observed when neuron fires. This makes 
states of the space-state model to be unknown which have to 
be estimated along with other unknown parameters of the 
system. To be able to estimate both state variables and 
unknown parameters of the model, a two step procedure is 
considered. In the first stage parameters are assumed to be 
known and state variables are estimated and in the second 
stage with known state variables unknown parameters are 
updated. Furthermore, training procedure is performed 
between two consecutive spikes. This is because state-space 
system is time variant and it varies at the time of input spike. 

III. SIMULATIONS AND CASE STUDY 

Two sets of data were employed to validate effectiveness 
of the model and also parameter estimation algorithm: a) 
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artificially generated data using the model, and b) 
hippocampal recordings of live cells. The goal was to tune 
the parameters of the model by the input s output data either 
generated officially or recorded from live cells. 

In the first set of experiments, it was assumed that 
parameters of the model are all known and EPSP was 
generated using the known model. Specifically, a random 
patterns of spikes were provided to the input of the system 
i.e., synapse and EPSP was produced. After having set of 
EPSPs and the input spike patterns, the parameters of the 
system was estimated. 

For the purpose of second set of experiments, the 
recordings were made from hippocampus CA1 pyramidal cell 
under whole-cell patch clamp configuration. Input was made 
via electrical stimulation of the CA3 axons, so the result of 
synaptic activation in the CA1 cell was observed and 
recorded. 

In the equations 1 through 12 stated in the section II, only 
two parameters are unknown namely Nmax and ¨F. These 
parameters provide long and short term potentiating factors 
and they are estimated from the data during training. The 
other parameters were assumed to be fixed and known.  

A.  Model adaptation using artificially generated data 

In this simulation a single neuron with 10 synapses were 
networked such that synapses were receiving random spike 
input and providing PSP to the post-synaptic neuron (feed 

forward connection). Neuron's output was only observed at 
the time of firing assuming all parameters of the system is 
known. Therefore the goal was set to estimate Nmax and ¨F 
of each synapse utilizing the same input spikes and the time 
of neuron's spike time. Figure 2 provides training progress 
and performance of the trained network. Referring to the 
Figure 2.b almost all unknown ¨F parameters are precisely 

estimated and only one out of ten Nmax parameters has not 
converged to the target value. This is something expected 
because the objective is to have neuron to fire at the desired 
spike time and since the goal has been reached the procedure 
has stopped. 

The same type of simulation was performed to show that 
the method of this study can be scaled up by utilizing more 
synapses and neurons. Single neuron with 80 synapses 
networked and unknown parameters were estimated. Figure 
3 shows the parameters before and after training. The 160 

 

Figure 1: Multiple synapses connected to a neuron 
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(b) 

Figure 2c, 2d: membrane potential and output spikes before 

training (a), and trained membrane potential and target spikes (b). 
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Figure 2a, 2b: unknown parameters of the system before training 

(a), and trained parameters (b). 
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Figure 3: Eighty synapses with 160 unknowns, unknown parameters 

of the system before training (a), and trained parameters (b). 
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parameters of the model estimated in less than one second 
utilizing an average desktop computer. 

B. Model adaptation using recordings of the hippocampal 

CA3-CA1 recorded data 

Data collected from CA1 neuron by applying Poisson 
distributed stimulus to the CA3 axon. The data collection was 
made by patch clap configuration in which rat slice thickness 
was 0.4 millimeter. It was assumed that only a single synapse 
and single neuron is sufficient for modeling the input output 
behavior of CA3-CA1 connections. The plan was to step up 
the number of synapses until the model generates the desired 
EPSP and spike timings. Figure 4 demonstrates the recorded 
data and the hippocampus cell's EPSP and the model 
predicted EPSP and spike times. 

The model's parameters after training is shown in the 
table I. The other known parameters of the model are also 
shown in the table I. 

Table 1: Model Parameters 

Parameter  Value 

Îr Facilitation Time Constant 250 msec 

:¿rárÙ; Facilitation Increment Factor (0.37238,0) 

Î~ Vesicle Recovery Time Constant 350 msec 

z��� Maximum Number of Release Sites 2.649 

kÎ�á Î�o Time Constant of EPSP (40, 29) msec 

IV. CONCLUSION 

In this paper we presented application of linearized 
synapse model defined by Facilitation and  Depression. If 
the time interval of the spikes inputting to the synapse 
remains above three milliseconds then the prediction error of 
a linear synapse model does not exceed five percent. So it 
makes utilization of linear synapse model to be an advantage 
when there is a need for scaling up the size of the spiking 
neural network. In this scenario, parameter estimation of the 

model can be achieved in a predictable time comparing to 
when the synapse model is nonlinear and its parameter 
estimation is achieved in an unpredictable time. 

The method of this study didn't require defining a specific 
mathematical function for measuring closeness of two spike 
patterns rather implicit constraints for the membrane 
potential at the time of spike was added to the objective 
function. The objective function combined with its 
constraints is a convex function however due to time 
variability of state space model, the parameter update has to 
be performed in between two consecutive spike intervals. In 
all of the simulation tasks of this study the parameters of the 
system converged to a steady-state value. 

The whole-cell recoding of CA3-CA1 hippocampal 
neurons was modeled by a single synapse and a neuron. The 
estimated parameters of the neuron provided capability for 
predicting very precise cell's firing time. At the same time 
the estimated EPSP had below two percent error compared 
to the one recorded from live cell. This makes utilization of 
state-space based model for predicting synapse/neuron's 
response to be attractive because all states of the synapse 
and neuron will be observable. It is worth mentioning that 
kernel based models for modeling EPSP can only provide 
prediction of EPSP with no details on synapse/neuron's 
intermediate states. 

Field potential recording of hippocampal cells involves 
interaction of multiple layers of neurons with many 
synapses. when field potential is recorded, the EPSP from 
inter-layers are unobserved. State-Space modeling of field 
potential recordings, requires the MPC to be extended for 
multi-layers. Though, in the current work strength of MPC 
for estimating unobserved states of the synapse/neuron was 
explored, it is planned to estimate unobserved inter-layer 
neuron's EPSP along with the other synapse and neuron' 
parameters. The later will be the work for future. 
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Figure 4: top is the input stimulus applied to the CA3, middle is the 

firing times of the model and cell, bottom is the generated EPSP by 

the model and recorded from the cell. 
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