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Abstract— This report summarizes our recent efforts to de-
liver real-time data extraction, preprocessing, artifact rejection,
source reconstruction, multivariate dynamical system analysis
(including spectral Granger causality) and 3D visualization as
well as classification within the open-source SIFT and BCILAB
toolboxes. We report the application of such a pipeline to
simulated data and real EEG data obtained from a novel
wearable high-density (64-channel) dry EEG system.

I. INTRODUCTION

Dynamic cortico-cortical interactions are central to neu-
ronal information processing. The ability to monitor these in-
teractions in real time may prove useful for Brain-Computer
Interface (BCI) and other applications, providing information
not obtainable from univariate measures, such as bandpower
and evoked potentials. Wearable (mobile, unobtrusive) EEG
systems likewise play an important role in BCI applications,
affording data collection in a wider range of environments.
However, reliable real-time modeling of neuronal source
dynamics using data collected in mobile settings faces chal-
lenges, including mitigating artifacts and maintaining fast
computation and good modeling performance with limited
amount of data. Here we describe some of the wearable hard-
ware and signal processing we are developing that attempt
to address these challenges, contributing to the development
of EEG as a mobile brain imaging modality.

II. MATERIAL AND METHODS

A. Wearable EEG Hardware

For mobile EEG applications, we have developed a 64-
channel wireless dry headset (Fig. 1). A padded sensor
is used on the forehead locations for contact with bare
skin. For through-hair recordings, a novel dry electrode is
used, consisting of a flexible plastic substrate coated with a
conductive surface. The legs of the sensor push through hair
to achieve contact with scalp, flattening with pressure to min-
imize discomfort and injury. Typical contact impedances are
100kΩ-1MΩ, and high input impedance amplifiers are used
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Fig. 1. Real-time data processing pipeline. A Cognionics 64-channel
system is depicted above with flexible active dry electrodes.

to ensure minimal signal degradation. Typical correlation
between simultaneously recorded averaged evoked potentials
(AEP, SSVEP, P300) for dry and standard wet electrodes is
r > 0.9 indicating comparable signal measurement. Nonethe-
less, the dry electrodes may exhibit a higher level of drift and
low frequency noise due to the lack of gel and skin-abrasion.

All electronics, including preamplifiers, digitization, bat-
tery (6-7 hour capacity), onboard impedance monitoring,
micro-controller and Bluetooth transceiver are contained in a
miniature box at the rear of the headset. Signals are sampled
at 300Hz with 24-bit precision. The total noise of the data
acquisition circuitry, within EEG bandwidth, is less than 1
µV RMS. Event markers are transmitted from the PC to the
headset via a special low-latency wireless link specifically
optimized to minimize jitter (< 500 microseconds).

B. Preprocessing and Artifact Rejection

EEG data are streamed into MATLAB (The Mathworks,
Natick, MA), and an online-capable pre-processing pipeline
is applied using BCILAB [3]. Elements of this pipeline may
be intialized on a short segment of calibration data. These
include rejection (and optional re-interpolation) of corrupted
data samples or channels. Short-time high-amplitude arti-
facts in the continuous data may be removed online, using
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a new method we call Artifact Subspace Reconstruction
(ASR). This relies on a sliding-window Principal Component
Analysis, which statistically interpolates any high-variance
signal components exceeding a threshold relative to the
covariance of the calibration dataset. Each affected time
point of EEG is then linearly reconstructed from the retained
signal subspace based on the correlation structure observed
in the calibration data. Artifacts may also be removed by
rejecting a subspace of ICA components pre-computed using
an (overcomplete) decomposition [14] on calibration data
or adaptively estimated using Online Recursive ICA [1].
Artifactual components may be identified automatically by
fitting dipoles to components and selecting a subspace of
components to retain based on heuristic criteria such as resid-
ual variance of dipole fit or dipole anatomical coordinates
and labels.

C. Source Reconstruction

Following pre-processing, one may estimate the primary
current source density (CSD) over a medium- to high-
resolution cortical mesh (3751-12000 vertices). For this
report we used a 3751-vertex mesh. Our default forward
model consists of a four-layer (skull, scalp, csf, and cortex)
Boundary Element Method (BEM) model derived from the
MNI Colin 27 brain and computed using OpenMEEG [5].
For inverse modeling, we rely on anatomically constrained
LORETA with Bayesian hyperparameter estimation [12].
This approach is well suited for real-time adaptive estimation
and automatically controls the level of regularization for each
measurement vector. For processing speed we follow the
SVD-based reformulation of [9]. Additionally, we segment
the source space into 90 regions of interest (ROIs) using
Automated Anatomical Labeling (AAL) [13]. The user can
compute spatially averaged, integrated or maximal CSD for
any subset of these ROIs. We make use of routines from our
MoBILAB toolbox freely available online [8].

D. Dynamical Systems Analysis

Preprocessed channel or source time-series are forwarded
to SIFT [3] and an order-p sparse vector autoregressive
(VAR[p]) model is fit to a short chunk of recent data (e.g. 0.5-
2 sec). The VAR coefficients are estimated using Alternating
Direction Method of Multipliers (ADMM) with a Group
Lasso penalty [2]. Model estimation is warm-started using
the solution for the previous data chunk. The regularization
parameter can be initialized by cross-validation on the cali-
bration data and/or adapted online using a heuristic based on
two-point estimates of the gradients of the primal and dual
norms. Model order can be selected offline, by minimizing
information criteria (e.g. AIC or BIC) on calibration data.
Following model fitting and tests of stability and residual
whiteness (autocorrelation function or Portmanteau), we ob-
tain the spectral density matrix and any of the frequency-
domain functional and effective connectivity measures im-
plemented in SIFT. Graph-reductive metrics such as degree,
flow, and asymmetry ratio can be applied to connectivity
matrices. These measures may be piped to BCILAB as

features for subsequent classification or visualized in real
time. Available graphs include current density, power spectra,
connectivity, outflow, etc. in 2-D plots as well interactively
within a three-dimensional model of the head and brain.

E. Connectivity Classification

To learn robust predictive models on the high-dimensional
connectivity feature space (d > 7000) from few trials strong
prior assumptions need to be employed. We applied a regu-
larized logistic regression, implemented via ADMM, to log-
transformed time/frequency (T/F) Direct Directed Transfer
Function [6] (dDTF) measures (yielding a 4-dimensional fea-
ture tensor across pairwise connectivity, time and frequency).
The regularization simultaneously employed a sparsifying
l1/l2 + l1 norm with one group for each connectivity edge,
containing its associated T/F weights, plus three trace norm
terms to couple the T/F weights for all out-edges of a node,
all in-edges of a node, and all auto-edges across nodes,
respectively, plus an l2 smoothness term across time and
frequency, respectively. The regularization parameter for the
data term was searched via (nested) 5-fold blockwise cross-
validation over the range 20,2−0.25, . . . ,2−10. The relative
weights of the regularization terms were searched over 10
predefined joint assignments, although setting all weights
simply to 1 yielded comparable results.

F. Data Collection

We have conducted preliminary evaluation of our pipeline
on both simulated data and real (64-channel) data collected
in mobile settings using Cognionics hardware.

1) Simulated Data: To test the ability of our pipeline to
accurately reconstruct source dynamics and connectivity in
real-time, we generated a five-dimensional VAR[3] system
of coupled oscillators as described in Eq. 3.1 of [10]. This
comprised the CSD time-series of 5 sources postioned on
a 3571-vertex cortical mesh. Each source had a Gaussian
spatial distribution (σ = 5 cm) with mean equal to the
centroid of each of the following AAL ROIs (respectively):
x1: Left Middle Cingulate Gyrus, x2: Left Middle Occipital
Gyrus, x3: Right Medial Superior Frontal Gyrus, x4: Right
Precentral Gyrus, x5: Left Precentral Gyrus. The system is
depicted in the inset in Fig. 3. We generated two minutes
of source time-series data (Fs=300 Hz) and projected this
through the realistic forward model described in Section II-
C to produce 64-channel EEG data. Gaussian i.i.d sensor
noise was added (SNR = σdata/σnoise = 5).

2) Real Data: One session of EEG data was collected
from a 22 year-old right-handed male performing a mod-
ified Eriksen Flanker task with a 133 ms delay between
flanker and target presentation [7]. Flanker tasks have been
extensively studied and are known to produce error-related
negativity (ERN, Ne) and error-related positivity (P300, Pe)
event-related potentials (ERPs) following error commission
as seen on Fig. 5 bottom. The Ne is an early negativity in the
EEG with middle/anterior cingulate generators which peaks
40-80 ms following commission of a response error. This is
often followed by a Pe peaking at 200-500 ms.
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Fig. 2. Comparison of true (red, dashed) vs. reconstructed (blue, solid)
current source density for a 1-sec segment of our 5 simulated ROIs. Sources
and data are scaled to unit variance

III. RESULTS

A. Simulation Data

The simulated EEG data (Section II-F.1) was piped
through our pre-processing pipeline (filtering and ASR dis-
abled here) and median CSD was computed for each of the
5 ROIs. Fig. 2 shows a 1-sec segment of reconstructed CSD
superimposed on the true CSD. Superficial sources were
accurately recovered, while the deep, tangential source (X1;
mid-cingulum) was somewhat more poorly reconstructed.
Spectral density, dDTF and partial directed coherence (PDC)
between ROI median-CSD time-series was estimated using
a 1-sec sliding window over 1-65 Hz. The max operator was
applied to collapse across frequency producing a 2D con-
nectivity matrix (directed graph). Fig. 3 shows the estimated
source network for a representative time window, using our
BrainMovie3D visualizer. Ground truth is displayed in the
inset. Over all time windows, the connectivity graph was
recovered with high accuracy – the average area under curve
(AUC) was 0.97 +/- 0.021. Peak coupling frequency and
relative strength were also correctly recovered.

B. Real Data

1) Data Quality and Artifact Rejection: For this paper,
our online pipeline included the following pre-processing
elements (in order of application): downsampling to 128 Hz,
sub-1 Hz drift correction (Butterworth IIR filter), bad channel
removal and interpolation, ASR, average referencing and 50
Hz low-pass minimum-phase FIR filtering. Four channels
were automatically removed (Afz,T7,T8,P09), which were
those also identified by eye as corrupted during data col-
lection. Fig. 4 shows a segment of EEG data contaminated
by blink and muscle artifacts, before and after ASR artifact
removal.

Single-trial EEG data for response-locked error trials are
shown for electrode FCz in Fig. 5. Trials are sorted by
reaction time. Although acausal filters cannot be used on-
line, for this plot alone, in order to accurately assess ERP
latencies, all filters were zero phase (acausal). We ran the
analysis with and without ASR (the latter shown here) and
confirmed that ASR did not distort ERPs (Fig. 5, red trace).

Fig. 3. Temporal snapshot of reconstructed source networks (PDC estima-
tor) displayed within the BrainMovie3D visualizer. Here edge color denotes
preferred coupling frequency while edge size and tapering respectively
denote coupling strength and directionality at that frequency. Node size
indicates outflow (net influence of a source on all other sources). The graph
is thresholded at the commonly used PDC heuristic level of 0.1. Cortical
surface regions are colored according to their AAL atlas label (90 regions).

Note that nearly every trial shows a visual evoked response
to the stimulus as well as prominent Ne and Pe following
the erroneous button press. The scalp topography of the Ne
(upper left) has a frontocentral distribution centered at FCz,
as expected for a mid/anterior cingulate or frontal midline
generator. Encouragingly, the quality of the evoked responses
is comparable to that reported using research-grade gel-based
EEG systems.

Fig. 4. 10 sec of EEG data following ASR data cleaning (blue trace)
superimposed on original data (red trace)

2) Source Reconstruction: Preliminary source analysis
showed good reconstruction of early visual evoked poten-
tials from occipital and parietal regions as well as frontal
localization of the Pe following button presses. However, the
Ne was not reliably recovered. As noted above, single-trial
estimates of current density may be less reliable for deep,
medial sources (i.e., cingulate regions) than for superficial
sources. While this issue has remedies, we defer a more
complete analysis to subsequent work and report connectivity
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Fig. 5. ERPImage of single-trial EEG potentials (no smoothing) at FCz
for response-locked error trials, sorted by latency of response to target onset
(red sigmoidal trace). Responses occur at 0 ms (vertical line). The bottom
panel shows the averaged ERP without ASR in blue, and the ERP with
ASR enabled in red.

analysis and classification on channel data.
3) Connectivity Analysis: For a moderate number of

channels (or sources) (8-15) with model order in the 10-
15 range, we generally obtained good VAR model fit (stable
with uncorrelated residuals, ACF test: p < 0.05). The VAR
process spectrum exhibits characteristic EEG 1/f shape with
theta, alpha, and beta peaks, including prominent occipital
alpha gain and occipital-frontal Granger-causality at rest with
eyes closed.

4) Classification: We tested our classification stage on
the problem of detecting human response error commission
from EEG data for which univariate source processes such
as event-related potentials (ERPs) have been employed in the
past [4]. However, to our knowledge, effective connectivity
features have not been used in this context. To this end we
used dDTF estimates between channels FP1, FP2, FCz, C3,
C4, PO3 and PO4 selected after 64-channel data cleaning.
Analysis was performed on epochs at -0.5 to 1.5 seconds
relative to button press events and time-frequency dDTF was
computed in a 1-sec sliding window within each epoch. We
performed a 5-fold blockwise cross-validation with clean
separation of testing and training data to measure AUC
on 172 trials, yielding a mean AUC of 0.895 +/- 0.047.
In order to compare with more conventional features, we
also performed 5-fold classification using a state-of-the-art
first-order ERP method [11]. Here we obtained a mean
AUC of 0.97 +/- 0.02. Given the saliency of error-related
ERP features in this dataset, it is not surprising that the
ERP-based method performs extremely well, outperforming
higher-dimensional connectivity features.

IV. CONCLUSIONS AND FUTURE WORK

The presented system is capable of real-time analysis.
On an Intel i7 4-core (2.3 Ghz) laptop, preprocessing and
source reconstruction (3751 vertex mesh) typically takes 50-
80 ms, model fitting 50-70 ms, classification under 5 ms and
(optional) MATLAB-based visualization 200-300 ms. While
it is promising that channel connectivity features contain
information relevant to error detection, it will be fruitful to
examine source connectivity as well attempt prediction of
error commission from pre-stimulus dynamics where time-
domain ERP features are absent.
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