
  

  

Abstract—This study proposes a new framework, independent 

component ensemble, to leverage the acquired knowledge into a 

truly automatic and on-line EEG-based brain-computer 

interfacing (BCI). The envisioned design includes: (1) 

independent source recover using independent component 

analysis (ICA) (2) automatic selection of the independent 

components of interest (ICi) associated with human behaviors; 

(3) multiple classifiers with a parallel constructing and 

processing structure; and (4) a simple fusion scheme to 

combine the decisions from multiple classifiers. Its implications 

in BCI are demonstrated through a sample application: 

cognitive-state monitoring of participants performing a 

realistic sustained-attention driving task. Empirical results 

showed the proposed ensemble design could provide an 

improvement of 7%~15% in overall accuracy for the 

classification of the arousal state and the driving performance. 

In summary, constructing ICi-ensemble classifiers and 

combining their outputs demonstrates a practical option for 

ICA-based BCIs to reduce the risk of not obtaining any desired 

independent source or selecting an inadequate component. 

Most importantly, the ensemble design for integrating 

information across multiple brain areas creates potentials for 

developing more complicated BCIs for real world applications. 

 

I. INTRODUCTION 

Over the last few decades, electroencephalography (EEG), 
the electric current produced by the activity of the brain, has 
been proven to be a robust physiological indicator used to 
characterize human behaviors. Several EEG-based 
brain-computer interfaces (BCI) have been proposed and 
developed for real-life applications such as fatigue 
monitoring, alertness evaluation, or accident prevention [1, 2]. 
However, suboptimal performances resulting from a poor 
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signal-to-noise ratio (SNR) of measured EEG signals in real 
operational environments still hindered the transition of 
laboratory-oriented neuroscience research to practical BCI 
devices. 

Recently, independent component analysis (ICA) [3] has 
been widely adopted to deal with the pervasive EEG 
contaminations arising from eye blinks, eye movements, 
muscle activities, and so on. ICA decomposes multichannel 
EEG signals into spatially fixed and maximally temporally 
independent component (IC) processes. Applying 
machine-learning techniques to assess the brain dynamics of 
different ICs had been shown to effectively enhance the 
system performance [4, 5]. However, how to automatically 
select informative IC(s) is an important issue for the practical 
applications in the real environment. Most existing 
ICA-based models use a predefined independent component 
of interest (ICi). In human performance studies, poor task 
performance might be caused by failure to functionally 
engage multiple brain processes. Hence, combining related 
brain processes to characterize complex human behaviors 
intuitively appears to be more reasonable than using only one 
or few specific processes. Further, ICA, applied to 
multi-channel EEG, produces unordered ICs. Although 
component scalp maps [6] help in recognizing the types of 
sources, selecting task-related ICi or discarding artifactual 
ICs often still requires manual intervention of an expert or 
experts. More importantly, ICs obtained from different 
subjects might vary widely, i.e., some ICs might be present in 
recordings from one subject but not from another. Most 
ICA-based BCI systems, particular systems using one or two 
specific ICi, would fail if none of the IC matches the target 
ICi. Under these circumstances, using an ensemble of ICs 
strategy selected by an automatic scheme to build an 
ICA-based BCI system is practically feasible.  

 

II. INDEPENDENT COMPONENT ENSEMBLE 

A. System Diagram 

Following the design guideline of a classifier ensemble or 
multiple classifier system [7], this study proposed an 
independent component ensemble system using multiple ICi 
(as shown in Figure 1) to build a brain-computer interface, 
aiming to overcome the above-mentioned problems. First, the 
templates of spatial maps [6] of the ICi were generated from 
our previous driving studies [4], in which the selected ICi 
was predefined based on the prior knowledge in EEG 
correlates of driving performance. Then, an automatic 
selection scheme searched target ICi from all ICs separated 
by ICA based on a simple similarity measurement. Second, 
fast Fourier transform (FFT) and feature extraction were used 

Automatic Design for Independent Component Analysis based 

Brain-computer Interfacing 

Chun-Hsiang Chuang, Member, IEEE, Yuan-Pin Lin, Member, IEEE, Li-Wei Ko, Member, IEEE, 

Tzyy-Ping Jung, Senior Member, IEEE, and Chin-Teng Lin, Fellow, IEEE  

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2180



  

to obtain spectral changes most characterizing brain 
dynamics. Third, a machine-learning classifier was built for 
each ICi to construct a classifier ensemble. The training 
procedure could be done in parallel to dismiss doubts about 
computation time. Finally, a decision-fusion method 
integrated outputs of all classifiers to make a final 
classification. The following sections describe the details of 
each EEG signal-processing step. 

 

B. Automatic ICi Selection 

Assume that the time courses of -channel EEG signals 

( ) receive an unknown linear combination of -IC ( ). 

This mixing model is written as: 

,         (1) 

where  denotes a mixing matrix. In other words, each IC 

contributes to the scalp EEG sensors through a spatial filter, 
i.e., the column of . By implementing ICA, an unmixing 

matrix (the inverse of the mixing matrix) can be obtained 
such that the underlying processes are statistically 
independent.  

Moreover, each spatial filter representing the projection 
strengths from a source to all EEG sensors could be rendered 
as a 2D scalp topography for source identification [6]. 
Technically, each map shown in Fig. 2 is the average ICA 
weights from the result of different subjects participating in 
our previous works [4]. Our previous study [8] has shown 
that the brain activations near or within the frontal, central, 
motor, parietal, and occipital regions were highly related to 
the changes in driving performance. Therefore, the scalp 
topographies of these five component maps were used as the 

spatial templates of ICi,  for automatic 

ICi selection. All the columns of  obtained by ICA were 

correlated with each template using Pearson’s correlation 
coefficient. If the correlation exceeds a pre-set value (e.g. 
0.8), the corresponding ICi was selected for further 
processing. Note that it is necessary to take the absolute value 
of the correlation coefficient so as to select the ICi potentially 
having a reverse polarity. Additionally, both arrays were 

scaled in the range of  before estimating the correlation 

coefficient. 

 

Figure 1.  Schematic diagram of the component ensemble classifications. 

C. Power Spectral Density Estimation 

To simultaneously characterize a short-term and a 
long-term change in brain activities, we performed a 
256-point FFT (sub-window: 128-point; zero-padding; 
256-point) for both 1-s and 90-s epochs of ICi signals. The 
dimensions for resultant power spectral densities,  and 

, consisted of 30 frequency bins from 0.98 to 30.3 Hz 

with a frequency resolution near 1 Hz. For the spectral 
representation of the ith-ICi, two spectral arrays were 
averaged: 

,        (2) 

where  and  in this study. 

 

D. Feature Extraction 

The proposed ensemble allows the classifiers to learn 
diverse spectral information from different ICi. To improve 
the efficiency of the ensemble classification, a 
dimension-reduction procedure was used to build the 
classifiers. The feature extraction extracted informative 

features from the original space  into a reduced space , 

where . Given a transformation matrix for each ICi, the 

feature extraction performed a linear mapping such that the 
transformed data preserved the relevant information. Criteria 
for assessing the transformation matrix in terms of the 
optimal features could be accomplished using several 
approaches and measurements such as a heuristic search, a 
statistical variability of data, or a class separability. This 
study applied several well-known algorithms, including 
sequential forward selection (SFS), principal component 
analysis (PCA), linear discriminate analysis (LDA) [9], and 
nonparametric weighting feature extraction (NWFE) [10] for 
the comparison of classification performances. 

 
Figure 2.  Weighting patterns of templates of ICi 

 

E. Classification Ensemble and Decision Fusion 

The dimension-reduced data  and the corresponding 

class-label  (  is the number of classes) 

were then used to train the parameters of the classifier. Note 
that the ensemble size d, i.e., the number of the classifiers, is 
equal to the number of ICs whose scalp maps match the 
spatial templates of ICi. The value of d thus varies from 
subject to subject. In the fusion system, a simple majority 
vote scheme integrated all the outputs of classifiers to make a 
final decision. The operation of the majority voting can be 
derived by: 

,    (3) 

where  denotes the cardinality of the set.  
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III. SYSTEM VALIDATION 

A.  Virtual-reality based Driving Simulator and 

Experimental Paradigm 

A virtual-reality based high-fidelity driving environment 
[4] was constructed to study the neurophysiological activity 
in response to complex driving behaviors. Seven personal 
computers projected a synchronized animation of a four-lane 
highway scenario onto fully immersive 360-degree walls 
through seven projectors at different viewing angles. The 
refresh rate of the highway scene was set properly to emulate 
a car cruising at a fixed speed of 100 km/hr. At the center of 
the driving simulator, a real car was mounted on a 
six-degree-of-freedom motion platform that simulated the 
movements of real driving. The event-related land-departure 
paradigm [11] was implemented in the driving simulator. 
This paradigm mimics a non-ideal road surface that makes 
the car randomly drift away from the cruising lane. The 
participant was instructed to steer the car back to the center of 
the original lane as soon as possible when facing each 
random car perturbation.  

 

B. EEG Data Acquisition and Class Assignment 

Ten volunteer subjects with normal or corrected to 
normal vision participated in the driving experiments. For 
EEG data acquisition, a Scan NuAmps Express system 
(Compumedics USA Inc., Charlotte, NC) recorded 
30-channel EEG signals with a 16-bit quantization level at a 
sampling rate of 500 Hz by Ag/AgCl electrodes. The 
impedance of all of the electrodes was maintained below 5 

 during the experiment. To reduce the data size and 

remove noise, the data were down-sampled to 250 Hz and 
filtered with a band-pass FIR filter (1~50 Hz) before further 
analysis. 

According to the observed reaction time ( ) in response 

to the lane-departure event and the average of RTs ( ) 

observed in a 90-s window, each trial was labeled by 

quantifying the driving performance (i.e., high:  

and low: ) and putative cognitive states (i.e., alert: 

 and drowsy: ). Hence, there were four 

classes of EEG trials: “alert state with high performance”, 
“drowsy state with low performance”, “alert state with low 
performance”, and “drowsy state with high performance”. 

 

C.  Classification Validation 

The signal processing of this study, including band-pass 
filtering and ICA, uses EEGLAB ToolBox [6]. To reduce the 
computational time, only the features that guaranteed the 
optimal subset in SFS or the eigenvectors with the largest 
eigenvalues in PCA, LDA, and NWFE were used for 
classification, i.e., . The LIBSVM [12] was used to 

construct the classifiers for SVM (with radial basis function). 
To obtain reliable accuracy, a leave-one-subject-out 
cross-validation process, which used the samples from a 
single subject as the validation data and the samples from the 
remaining subjects as the training data, was repeated for ten 
subjects. All the parameters of the feature extractions and the 
classifiers were calculated from the training data and applied 

to the testing data. Training and testing data were totally 
disjoint. In the final voting step, the decision-making process 
would randomly choose one of the classes to break a tie vote 
if no class had majority votes. 

A similar concept of the ensemble system could also be 
applied to the EEG channels of interest. If none of the IC 
matches any of the templates of ICi, we could easily change 
the BCI system from the ICA-based ensemble to an 
electrode-based ensemble. This study would provide the 
result of the ensemble system using channel-domain signals 
as the benchmark to test the effectiveness of the proposed ICi 
ensemble approach. We used signals from Fz, Cz, T7, Pz, 
and Oz channels in this drowsiness-detection application. 

 

 

Figure 3.  Results of the ICi seleciton for (A) subject01 and (B) ten 

subjects. The dark bars indicate the scalp maps of the IC had a high 

similarity with the templates. The red dash line is the threshold for the 

correlation coefficient of 0.8. 

 

IV. RESULTS AND DISCUSSIONS 

A. Adaptive Ensemble Size 

Figure 3A shows the results of a similarity test of the ICi 
selection for a sample subject (subject01). In this study, if the 
correlation coefficients between spatial templates (Fig. 2) and 
ICA-extracted components (upper panel in Fig. 3A) are over 
0.8, the corresponding temporal IC activation was selected as 
ICi. Figure 3B shows the results of the ICi selection across 
ten subjects. The averages of the absolute values of the 
correlation coefficients between selected maps and 
predefined templates were 0.978, 0.957, 0.925, 0.943, and 
0.853 for the frontal, central, motor, parietal, and occipital 
components, respectively. As expected, different subjects had 
different numbers of ICi. The individual variability in the ICi 
selection led the resultant BCI to be a subject-dependent 
system. The ensemble sizes for s01 to s10 were 9, 5, 4, 5, 9, 2, 
5, 6, 6, and 8, respectively. 
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TABLE I.  THE AVERAGED CLASSIFICATION ACCURACY OF THE ENSEMBLE SYSTEM USING CHANNEL-DOMAIN SIGNALS. 

Feature 

extraction 
Classifier 

Channel 
Ensemble 

Fz Cz T7 Pz Oz 

SFS 

SVM 

63.0±3.8 65.2±2.3 55.6±9.3 73.3±4.8 72.0±6.9 77.3±3.4* 

PCA 66.1±5.0 59.9±4.6 53.7±6.9 65.3±7.7 60.7±5.4 67.1±4.0 

LDA 64.9±5.6 69.9±6.2 57.7±10.7 64.9±6.5 59.9±4.0 71.0±5.1 

NWFE 73.2±4.2 74.9±4.9 59.2±7.2 75.3±4.2 72.8±5.8 79.8±3.5* 
Each cell represents the classification accuracy ± standard deviation (in %). The asterisk denotes a significant difference in the mean value between the classification accuracy of using one channel (with the highest 
accuracy) and the proposed ensemble, where *: p-value<0.01. 

TABLE II.  THE AVERAGED CLASSIFICATION ACCURACY OF THE PROPOSED ENSEMBLE USING INDEPENDENT COMPONENTS. 

Feature 

extraction 

Classifier ICi Ensemble 

Frontal Central Motor Parietal Occipital 

SFS SVM 78.1±6.9 72.6±9.2 75.6±8.4 84.1±8.0 77.2±7.7 88.1±1.5* 

PCA 67.9±7.3 62.9±4.6 54.1±4.5 69.2±4.7 64.9±8.4 75.9±2.9 

LDA 64.7±3.9 69.9±5.6 65.7±5.3 68.2±5.6 65.7±2.9 79.7±1.4* 

NWFE 79.5±3.7 80.0±2.2 80.9±4.0 84.3±2.4 82.8±2.8 91.6±1.1* 
Each cell represents the classification accuracy ± standard deviation (in %). The asterisk denotes a significant difference in the mean value between the classification accuracy of using one ICi (with the highest 
accuracy) and the proposed ensemble, where *: p-value<0.01. 

 

B. Classification Accuracy 

Table I shows the summary of classification accuracy (the 
average and the standard deviation of the accuracy) using 
scalp-recorded EEG signals. The last column in Table I lists 
the classification results obtained by the ensemble 
classification. An asterisk is placed next to the number that 
reaches a statistically significant improvement compared to 
the highest accuracy of the SVM using one channel signal. 
The ensemble approach significantly improve the 
classification accuracy from 60~75% to 79.8%. Table II 
compares the classification results between all feature 
extraction methods with a SVM classifier by using ICi 
signals. Compared to the ensemble system using original 
signals without ICA, the proposed ensemble system 
successively improved the classification accuracy and 
reduced the standard deviation in most of the cases. For 
example, using NWFE with SVM, the accuracy increased 
from 79.5% (frontal), 80.0% (central), 80.9% (motor), 84.3% 
(parietal), and 82.8% (occipital) to 91.6% (ensemble); 
moreover, the standard deviation decreased from 2.2%~4.0% 
to 1.1%. These results proved that the proposed ensemble 
approach could obtain a better classification, rather than 
being at risk of taking a suboptimal solution based on 
pre-defined component(s). 

 

V. CONCLUSIONS 

This study proposed an independent component ensemble 
to integrate information from multiple brain regions and 
overcome the subject variability in resultant independent 
components. By combining ICA, automatic ICi selection, 
feature extraction, classifier determination, and a 
decision-fusion method, a truly automatic, on-line BCI 
system can be effectively constructed for real-life 
applications. 
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