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Abstract— Functional near infrared spectroscopy (fNIRS) is
rapidly gaining interest in both the Neuroscience, as well as
the Brain-Computer-Interface (BCI) community. Despite these
efforts, most single-trial analysis of fNIRS data is focused
on motor-imagery, or mental arithmetics. In this study, we
investigate the suitability of different mental tasks, namely
mental arithmetics, word generation and mental rotation for
fNIRS based BCIs. We provide the first systematic comparison
of classification accuracies achieved in a sample study. Data
was collected from 10 subjects performing these three tasks.
An optode template with 8 channels was chosen which covers
the prefrontal cortex and only requires less than 3 minutes for
setup. Two-class accuracies of up to 71% average across all
subjects for mental arithmetics, 70% for word generation and
62% for mental rotation were achieved discriminating these
tasks from a relax state.
We thus lay the foundation for fNIRS based BCI using
additional mental strategies than motor imagery and mental
arithmetics. The tasks were chosen in a way that they might
be used for user state monitoring, as well.

I. INTRODUCTION

A. Motivation

Functional Near Infrared Spectroscopy (fNIRS) is a state-
of-the-art non-invasive brain imaging technology based on
hemodynamic responses to cortical activities. The effects
that can be measured using fNIRS (see Section I-B) are
the same ones observed with fMRI, the de facto standard in
neuroimaging. Compared to fMRI, fNIRS is portable, cheap
and does not confine the subjects. Measuring the very reliable
hemodynamic responses and offering a very good spatial
resolution, fNIRS has advantages over EEG, the standard
in Brain-Computer-Interface (BCI) research, as well.
The paradigm used for BCI control can affect classification
and recognition accuracies in EEG significantly [1]. Even
though this has been studied in detail in EEG, there is,
to the best of our knowledge, no systematic comparison of
paradigms and the resulting accuracies for classification in
fNIRS. To investigate the suitability of different mental tasks
for BCI control and the discriminability of the tasks from
relax and from each other, we conducted experiments with
three mental tasks, namely mental arithmetics, word genera-
tion and mental rotation. An optode layout on the forehead,
measuring hemodynamic responses in the prefrontal cortex,
was used to allow for fast setup times.
Besides being useful in BCIs, the robust classification of
these tasks might also enable user state monitoring, as we
could classify which type of task is currently occupying the
user. fNIRS could be used to classify user states, which are
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currently non observable. This might be useful in classroom
settings, where it could help evaluate what type of prob-
lem, mathematical, language or orientation, the student is
currently struggling with.
So far, motor imagery is the most popular paradigm for BCI
research in EEG and has been published first for fNIRS based
BCI, as well [2]. Accuracies achieved in these BCIs are
usually good and motor imagery suits most users. However,
setup of EEG caps is usually very time consuming. In fNIRS
experiments, the identification of relevant areas for optode
placement on the motor cortex is complex and cumbersome.
To measure fNIRS signals, optodes require skin contact, a
constraint often hard to meet on the motor cortex, where
hair has to be moved aside under the optodes in a lengthy
procedure. Our optode template, on the other hands, requires
little anatomical knowledge and can be setup in less than
three minutes.
Mental arithmetic [3], word generation [4] and mental rota-
tion [5] have been shown to create hemodynamic responses
in the prefrontal cortex, our area of interest. Mental arith-
metic has been used successfully in single trial analysis of
fNIRS data [6]. Ogata et al. have conducted first single
trial experiments with different mental tasks in the prefrontal
cortex [7]. However, in their study with only 10 trials per
subject and task, they neither discriminate the tasks from one
another nor compare classification accuracies.

B. Functional Near Infrared Spectroscopy

Light in the near infrared range of the electromagnetic
spectrum (620 nm - 1000 nm) disperses through most bio-
logical tissues like bones and skin. Hemoglobin, the oxygen-
carrying part of blood, on the other hand absorbs near
infrared light. As changes in blood oxygenation in cortical
areas are triggered by neural activity, hemoglobin levels
change with neural activation. fNIRS makes use of this effect
to measure cortical activity by shining near infrared light
into the subject’s head with light-sources and measuring the
light intensities transmitted through the head with detector-
optodes. For a source-detector pair with distance l, the
measurement position is located in the middle between the
two in a depth of approximately l/2 and is denoted as a
channel. Oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) have different light absorption character-
istics (with absorption coefficients αHbO and αHbR) and thus
their concentration changes (denoted as ∆HbO ∆HbR) can
be calculated from the changes in light intensities (∆OD)
using the modified Beer-Lambert law [8]:

∆HbO =
∆OD

b · l · αHbO
, ∆HbR =

∆OD

b · l · αHbR
,
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where b is the length of the photon path between sources
and detectors, along which the light travels.
A typical hemodynamic response to cortical activity rises
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Fig. 1. Average hemodynamic response of subject 4 in channel 7
performing mental arithmetics (solid lines) and relax tasks (dashed lines).
The dotted line indicates end of mental task.

during activity for HbO and returns to baseline after the
end of the activation. HbR levels should respond inverted,
i.e. decrease upon activity and rise back to baseline in rest
periods. Figure 1 shows an average hemodynamic response
of subject 4 to mental arithmetics and the return to baseline
when resting. The Figure also illustrates that HbO and HbR
do not change significantly during the averaged relax trial.

II. MATERIAL AND METHODS

A. Experimental Setup

To measure the hemodynamic responses in the prefrontal
cortex, we used an Oxymon Mark III by Artinis Medi-
cal Systems. Four transmitter optodes, transmitting at two
wavelength of 765 nm and 856 nm each, and 4 receiver
optodes were placed on the subjects’ foreheads. Transmitter
and receiver optodes were placed 3.5 cm apart. In this setup,
every receiver optode was measuring light intensities from
two transmitter optodes resulting in a total of 8 channels of
∆HbO and ∆HbR data. Figure 2 illustrates our optode setup.
An experienced assistant needs less than three minutes to fix
the optode holder to the subject’s forehead while assuring
high data quality. Data was sampled at 10 Hz.
The experiment consisted of three different tasks the subjects
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Fig. 2. Optode placement on subject’s head. Transmitter optodes are
labelled Tx. Receiver optodes are marked Rx.

had to process during trials. These were:

• Mental Arithmetics (MA): The subjects were asked
to repeatedly subtract a given minuend between 7 and
19 (10 excluded) starting with a given number between
501 and 999.

• Word Generation (WG): The subjects were asked to
imagine words starting with a given letter.

• Mental Rotation (MR): The subjects were asked to
visualize rotating the shown 3D object around the x-
axis.

Trials were presented to the subjects on a screen for 10
seconds in a random order. After every trial of one of the
three tasks, the subjects had to rest for 15 seconds to ensure
that hemoglobin levels could return to baseline levels. None
of the tasks required any input by the user assuring that there
are no systematic motion artifacts in our data. We recorded
30 trials of each task for every subject. A total of 30 relax
trials were inserted randomly after resting periods to gather
data during a mental relax state without prior activation. The
subjects continued to rest motionlessly in these intervals and
did not receive specific instructions. In total, we collected
120 trials per subject. Longer pauses of 5 minutes were
included after each 15 minute block in which the subjects
could drink and talk to the experiment supervisor. This
resulted in a total recording time of 52.5 minutes per subject.
In total, we recorded 10 right handed subjects (3 female) with
a mean age of 23 and a mean Edinburgh handedness score
[9] of 83. All subjects were informed prior to the experiment
and gave written consent.

B. Signal Preprocessing

To remove heartbeat artifacts and long period shifts from
the 8 channels of ∆HbO and ∆HbR data, we bandpass
filtered the signals from 0.01 Hz to 0.6 Hz using elliptic
IIR filter with filter order 6. Subsequently, linear trends were
removed in 5 minute blocks using linear detrending.
In an excellent comparison of movement artifact reduction
techniques for fNIRS, Cooper et. al. [10] suggest the wavelet
denoising technique as the most reliable to remove movement
artifacts from fNIRS data. We applied the wavelet artifact
removal technique suggested in [11] to our signals. For this
procedure, the ∆HbO and ∆HbR data y(t) of every channel
is transformed using the general wavelet transformation:

y(t) =
∑
k

cj0kφj0k(t) +

∞∑
j=j0

∑
k

djkψjk(t)

with cj0k and djk being the approximation and detail co-
efficients and φjk(t) and ψjk(t) being scaling and wavelet
functions. The parameter j represents the dilation, with j0
being the coarsest scale in the decomposition, k is the
translation parameter. Assuming a normal distribution of
wavelet coefficients, we can easily estimate the probability
of coefficients higher than a given coefficient. Hemody-
namic signals should have a smooth probability distribution
and very low variance. Based on these observations, one
can remove artifacts by removing wavelet coefficients with
probabilities smaller than a cutoff threshold α. We used a
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threshold of 10 times the interquartile distance. As none of
our tasks contain any systematic movement and since our
subjects were sitting relatively still, we applied a very low
threshold to filter only the most unlikely wavelet coefficients.
After preprocessing, trials were extracted based on the exper-
iment timing. Each 10 second trial was baseline normalized
by subtracting the mean of the 5 seconds prior to the trial.
A label corresponding to one of the 3 tasks or relax was
assigned to each of the trials. We did not include the resting
periods directly after each trial, in which hemoglobin levels
returned to baseline, nor the long pauses of 5 minutes in our
analysis.

C. Feature Extraction

Feature extraction for single trial fNIRS analysis usu-
ally uses simple features based on a typical hemodynamic
response. Rising and falling trends in the trials are often
extracted by subtracting the mean µ of the first half of the
trials from the mean of the second half of the trial [12],
[13]. We extend on this idea, by looking for the largest
increase and decrease between the mean of two adjacent
frames of size fs. As beginning and end of the hemodynamic
response vary between subjects and even trials, we extract
both decrease and increase. These features are denoted as
f↑t,c and f↓t,c, respectively.
In typical hemodynamic responses, ∆HbO and ∆HbR are
strongly negatively correlated [14] with changes more pro-
nounced in the ∆HbO data. To reduce the size of the feature
space, we only extracted features for ∆HbO and did not
include the mostly redundant ∆HbR data. In total, we extract
two features for every trial t in every channel c in the
following manner:

f↑t,c = max
i∈[fs,len(t)−fs]

(µ(∆HbOt
c,i:i+fs)−µ(∆HbOt

c,i−fs:i))

f↓t,c = max
i∈[fs,len(t)−fs]

(µ(∆HbOt
c,i−fs:i)−µ(∆HbOt

c,i:i+fs))

We chose a framesize of 3.5 seconds in this study.
In total, we thus extracted 16 features for each of the 120
trials.

D. Evaluation

To judge the suitability of the different mental tasks for
fNIRS based BCI or user state monitoring, we evaluated our
system using a 10-fold cross-validation approach. We divided
the data into 10 equally sized folds and trained a Linear
Discriminant Analysis (LDA) classifier on the features of 9
of these folds and tested on the features of the remaining
fold. This was repeated 10 times in a round-robin manner.
We evaluated classification accuracies of all mental tasks
(MA, WG, MR) against relax and of the mental tasks against
each other.

III. RESULTS

Figure 3 illustrates the differences in average hemody-
namic responses which serve as basis for our classification.
Decreases and increases in ∆HbO occur in different channels
and at different points in time for the different mental tasks,

leading to earlier returns to baseline and different amplitude
of hemodynamic responses. Our extracted features f↑t,c and
f↓t,c make use of this fact and allow us to distinguish reliably
between the tasks and the relax state.
A complete overview of all classification results is presented
in Figure 4. Part (a) depicts classification results of the three
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Fig. 4. Classification results of all 10 subjects for experiments against
relax (a) and against each other (b). Each bar represents one subject in
one experiment. Whiskers indicate standard deviations. Dotted line denotes
naive classification rate.

tasks (MA, WG, MR) against relax for all 10 participants.
Classifying mental arithmetics from relax worked with an
average of 71% accuracy. This result is comparable to that
achieved in [15]. Differentiating between word generation
and relax yielded 70% average accuracy. Accuracies for
mental rotation were lower with an average of 62%. There
was no significant difference in the classification perfor-
mance of mental arithmetics and word generation, as tested
by a Wilcoxon rank-sum test (p = 0.4280), but both were
significantly better than mental rotation (p < 0.01). All three
tasks could be discriminated from the relax state significantly
better than naı̈ve classification (p < 0.01). These results
show that all three mental tasks are effective paradigms
for fNIRS based BCI or user state monitoring, but word
generation and mental arithmetics work more reliably than
mental rotation.
Classification results among the three different tasks are
shown in part (b) of Figure 4. Mental arithmetics was
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Fig. 3. Average hemodynamic responses in HbO of subject 4 during all tasks.

discriminated from word generation with an average perfor-
mance of 60%. The LDA classifier achieved 60% between
mental arithmetics and mental rotation. Word generation and
mental rotation yielded an average result of 61%. Results
for discrimination between the three different tasks were
significantly better than naı̈ve classification (p < 0.01), as
well. The fact that all these experiments yield significant
results shows that fNIRS based BCIs with multiple tasks
is feasible and might reach results comparable to 4-class
systems in EEG [16]. Table I summarizes our findings with
average results and standard deviations across all 10 folds of
all 10 subjects.

TABLE I
AVERAGE CLASSIFICATION RESULTS AND STANDARD DEVIATIONS

ACROSS SUBJECTS IN %. RESULTS MARKED WITH * ARE SIGNIFICANTLY

BETTER THAN NAIVE CLASSIFICATION.

MA WG MR MA/WG MA/MR WG/MR
Acc. 71* 70* 62* 60* 60* 61*
Std. 10.3 12.1 12.2 7.6 7.5 9.5

IV. CONCLUSION

In a study with 10 subjects, we have shown that fNIRS
signals in response to three different mental tasks can be
reliably discriminated both from a relax state and from each
other. The optode template we used supplied us with good
measurements of hemodynamic responses in relevant parts
of the prefrontal cortex and can be set up quickly. We
thus present the first systematic comparison of classification
accuracies of the mental tasks mental arithmetics, word
generation and mental rotation and prove that all tasks are
suitable for fNIRS based BCI. All of these tasks have been
of prior interest to the neuroscientific community, but have
never been evaluated in single-trial analysis with fNIRS.
Classification accuracies and hemodynamic patterns lay the
foundation for fNIRS based BCI using different mental tasks
than the established motor imagery paradigm and might be
used for state monitoring.
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