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Abstract² Within brain-machine interface systems, 

cortically implanted microelectrode arrays and associated 

hardware have a low-power budget for data sampling, 

processing, and transmission. Recent studies have shown the 

feasibility of data transmission rate reduction using compressed 

sensing on detected neural spikes. They provide power savings 

while maintaining clustering and classification abilities. We 

propose and analyze here a low-power hardware 

implementation for spike detection and compression. The 

resulting integrated circuit, designed in CMOS 65nm 

technology, consumes 2.83 µW and provides 97% of data rate 

reduction. 

 
Index Terms²Brain-Machine Interface, Compressed 

Sensing, Integrated circuits, Neural signals processing.  

I. INTRODUCTION 

RAIN-MACHINE Interfaces (BMIs) detect and decode 
neural data aiming the control of an external actuator. 

Their major applications include the restoration of 
sensorimotor functions for patients with neurological 
disorders in which the controlled devices are such as robotic 
prosthesis [1]. Decoding neural data requires spike sorting, 
consisting in detecting neuronal spikes and then classifying 
them by source neuron. Spiking neural data is recorded by 
microelectrode arrays; state-of-the-art systems aim at 
implanting the data sampling and transmitting it wirelessly to 
the external world, to avoid cables passing through the skull. 
The associated hardware has strong power constraints since 
it must fit into the microelectrode base area; moreover, its 
power density is limited to avoid damaging the biological 
tissue [2]. As stated in [4], the energetic cost for wirelessly 
transmitting the collected data is much greater than for any 
other node function (AD conversion, spike detection, etc.). 
Thus, the reduction of its transmission rate by data 
compression has been recently addressed seeking the respect 
of these restrictions. 

Under this perspective, the simplicity of the Compressed  
Sensing (CS) compression algorithm has motivated the study 
of its viability in BMIs. In [3], the use of CS is proposed for 
generic biosignals sparsely represented in a determined 
domain; it is suggested the compression of the collected 
signal in its totality. Specifically for neural data, it has been 
shown in [4] that CS can be used individually on each 
detected spike, while maintaining clustering and 
classification abilities. In that way, the data compression 
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increases allowing a higher reduction on transmission energy 
consumption. Therefore, we propose and analyze a low-
power hardware implementation aiming at spike detection 
and CS compression. Previously proposed hardware 
solutions comprise the realization of: spike detection with no 
further compression [5], or detection followed by feature 
extraction [6]. 

This paper is organized as it follows. Section II explains 
CS compression algorithm and the spike sorting method. 
Section III specifies the characteristics and constraints of the 
desired system. Section IV presents the dataset, the design, 
and the validation of the proposed architectures. Section V 
describes possible solutions and discusses their 
implementation results, and is followed by a discussion.  

II. THEORETICAL BACKGORUND 

A. Compressed Sensing 

Compressed sensing has been conceived to allow sparse 
signals to be properly rebuilt from representations with low 
sampling rates [7]. It consists in representing the original 

sparse signal N
x �� by a subspace projection as in 

xy � I      with     Nmu��I and Nm � ,  (1) 

whereI is called encoding matrix and m
y �� is the 

compressed signal, thus giving mN as compression rate. 

Although (1) does not present high computation complexity, 
an efficient signal reconstruction involves a complicated 
minimization problem. In opposition to this drawback, it is 
shown by [4] that it is possible to retrieve the information 
required by BMI applications directly from individually 
compressed spikes. By using a random binary encoding 

matrix where the probability of each state ( 1r ) is 0.5, spike 
sorting is shown feasible with a compression rate of 5.33 
considering N=32 (extracted spike length) and m=6. Seeing 
that this approach is very well adapted to hardware 
implementation, we study hereinafter its possible 
architectural implementations. 

B. Spike-Sorting 

1) Detection and Extraction 

The spike detection methodology considered in [4] is the 
same as for [9] and it is called Absolute Value (AV). This 
technique detects a spike whether the current sample is 
superior to a threshold defined as: 
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where x is the band-pass filtered input signal and NV is an 

estimate of the standard deviation of the background noise. 
According to [8], the multiplication factor 4 can be slightly 
changed in order to adapt to different noise levels. For each 
detected spike, 64 samples are saved and then aligned with 
respect to their maximum. 
 Other detection approaches have been studied under the 
perspective of hardware implementation in [9]. It is 
concluded that the Nonlinear Energy Operator (NEO) 
method [10] is the most appropriate, given its adaptability to 
a larger range of signal to noise ratios. It consists in 
calculating the instantaneous energy for each sample of the 

input signal )]([ nx\ and comparing it to a threshold as in: 

)1()1()()]([ 2 ���� nxnxnxnx\  (3) 
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where N is the number of samples in the input signal x and 
C=8 [9]. Following detection, alignment is necessary for the 
correct spike extraction.  

2) Clustering and Classification 

To guarantee the clustering and classification abilities of 
spikes after hardware CS compression, we use the same 
classification method as in [4]. Initially, the extracted and 

compressed spikes m
y �� are represented by means of a 

principal component analysis, and then the resulting points 
are used to construct a minimum spanning tree seeking the 
initialization of the clusters centers. Finally, the k-means 

algorithm makes the correspondence of each spike to a 
cluster. 

III. SYSTEM DESCRIPTION 

7KH� HQYLVLRQHG� V\VWHP¶V� LQSXW� VLJQDO is filtered and 
digitally converted neural data collected by one channel of a 
microelectrode array (see section IV-A), the desired output is 
detected and compressed spikes. Fig. 1 illustrates the general 
modular structure chosen for the system. The input signal is 
set here at a rate of 24 kHz, and is at first stored in a buffer 
which is accessible by two modules: one responsible for the 
spike detection and another in charge of the compression. 
Whenever a spike is detected, the former notifies the latter to 
start the compression. The output is initially set to zero and it 
is updated each time the compression of a spike is 
completed. 

We consider each spike to be represented by 32 16-bits 
samples. The encoding matrix thus has 6 rows and 32 

columns and its elements ( 1r ) are randomly distributed. 
The runtime of a single compression is limited to the interval 
until the arrival of the next potential spike. In order to avoid 
damages to the biological tissue, the power density must be 

inferior to 800 µW/mm² [3]. The circuit must have an area in 
the order of 0.01mm² to fit alongside the filter and the 
analog-to-digital converter into the microelectrode base area. 

IV. MATERIAL AND METHODS 

For this paper, we use simulated neural data made publicly 
available by the authors of [8]. They are available in the 
form of a 10-second-long simulated signal containing 507 
spikes. Over this data set, we apply a band-pass (300 Hz ± 3 
kHz) second-order Cauer filter followed by an analog-to-
digital 16 bits conversion with uniform quantization. We 
have previously computed the spike detection and 
compression using Matlab

�, and used those results to 
validate our hardware implementations. In addition, we have 
performed spike classification on compressed signals in 
order to evaluate the eventual performance loss after 
compression. By this mean, the encoding matrix minimizing 
classification errors has been identified and selected. 

The proposed architectures have been described in 
Register Transfer Level (RTL), then validated with 
ModelSim

� and finally synthesized with a 65nm CMOS 
process from STMicroelectronics. The synthesis allowed 
both surface and power estimation on Synopsys

� and 
Spyglass

� respectively. 

V. ARCHITECTURES AND RESULTS 

A. Spike Detector 

We have designed and evaluated circuits for AV and NEO 
detection methodologies. For the first one, a few changes 
have been applied seeking either noise level adaptation or 
hardware simplification. The NEO detection method has 
been implemented exactly as described in section II-B. 

The AV spike detector proposed circuit calculates the 
threshold with a multiplication factor of 5 instead of 4 (see 
eq.2) which results in better response to high noise levels at 
the expense of increasing the probability of missing spikes. 
We have chosen by experimentation to use the first 512 
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Fig. 2.  Spike Detectors Structures ± ALIGN is used to shift CS Compressor 
buffer addressing according to the desired alignment. 
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Fig. 1.  Global System Modular Schematic 
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samples of the input signal to calculate the threshold. After 
that, if a sample value is greater than this threshold, this one 
is considered the twelfth sample of a spike, and no further 
alignment is performed. This strategy requires that the buffer 
holds a minimum of 13 samples. 

Regarding the NEO approach, for its threshold 
calculation, we have set N to 1024 which results in a 42.66 
ms long setup phase. Then, whenever a spike is detected, the 
maximum sample value among the threshold-crossing 
sample and its following 20 samples is set as the twelfth 
spike data point. With this technique, the buffer must store a 
minimum of 32 samples. 

Fig. 2 demonstrates generically both spike detectors 
architectures. The estimates of the area and the power for 
each detector are presented by Table I. In order to 
compensate the higher complexity of the NEO technique, the 
detection is done using only the 8 most significant bits of the 
samples. 

B. CS Compressor 

1) Encoding Matrix 

There are several possibilities for the implementation of 
the encoding matrix; in any case, for classification purposes, 
we must ensure the same matrix multiplication is applied to 
all spikes. We can either store it in a memory unit or 
generate it internally during compression. 

Memory storage has the advantage of flexibility, i.e., the 
encoding matrix can be easily changed anytime after the 
sysWHP¶V�FRQFHSWLRQ�E\�UHSURJUDPPLQJ��,Q�FRQWUDVW��LQWHUQDO�
matrix generation can provide area and power optimizations 
limiting the range possible encoding matrixes once the 
system is conceived. The authors of [3] propose the use of 
two Pseudorandom Bit Sequence (PRBS) generators; we 
suggest a Moore Finite State Machine (FSM) dedicated to 
the generation of a specific matrix which has been previously 
proven well adapted for spike classification (see section IV). 
 We have synthesized four variations over these described 
possibilities. For the memory storage, we have considered a 
SRAM. The PRBS generation method has been implemented 
with two 6 bits PRBS generators. Additionally, two FSM 
matrix generators have been analyzed, one producing one 
matrix column for each clock cycle (32 states) and another 
doing it element by element (192 states). Table II shows the 
area and the power consumption estimates for these circuits, 
including that of their control logic. We have parameterized 
all implementations to permit the reading of the whole matrix 
in 1 ms. 

2) Compression Computation 

The CS compression, i.e., the calculation of (1), is 

composed by multiplications and sums. To simplify the 
operations, we consider the binary values 0 and 1 of the 
encoding matrix as representing the states +1 and -1 
respectively, thus the multiplication by these values can be 
easily done with XOR gates and the carry-in input of adders 
[3]. 

 
The simplest strategy is to implement all the computation 

in a completely combinatory logic including the encoding 
matrix, however it is probably the most area and power 
consuming approach. Alternatively, the compression can be 
calculated on several cycles, so we consider an adaptation of 
the strategy in [3] with the use of XOR ports and 
accumulators (Fig. 3); in addition, we suggest the reduction 
to only one adder structure with multiplexed inputs as 
illustrated by Fig. 4. These implementations compress one 
spike throughout 32 and 192 clock cycles respectively. 
 In order to correctly compare all these solutions, we have 
standardized the output word length to 18 aiming to reduce 
the incidences of overflows. Besides, we have set the 
frequencies at 32 kHz and 192 kHz to have the compressed 
spikes available at the output 1 ms after their detection. The 
previously described FSMs have been used to generate the 
matrix for the sequential calculation approaches. Table III 
shows the synthesis results, it comprises the matrix 
generation, and the compression calculation modules 
alongside their control units. 

TABLE II 
ENCODING MATRIX SYNTHESIS RESULTS 

Implementation Area Power 
SRAM 720.5 µm² 58.37 nW 
PRBS 319. 8 µm² 53.5 nW 

FSM 32 States 282.36 µm² 24.5 nW 
FSM 192 States 403.52 µm² 50.5 nW 
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Fig. 3. Adapted Implementation ± n represents the current calculation cycle, 
it iterates through the spike samples and the matrix columns. 
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Fig. 4.  Multiplexed Accumulators ± the combinations of n and i represent 
the current calculation cycle, n iterates through the spike samples and the 

matrix columns whereas i do it through its rows. 

TABLE I 
SPIKE DETECTOR SYNTHESIS RESULTS 

 Area [µm²] Power [nW] 
Detection Method AV NEO AV NEO 

Buffer 2596.36 6389.76 478 1250 
Spike Detector 1608.36 5317.52 193 1000 

Total 4204.72 11707.2 671 2250 
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VI. DISCUSSION  

As already stated, the main goal of this work is to optimize 
power on implanted BMI sensor nodes. We recommend the 
use of the NEO detection methodology that shows better 
performance for larger noise levels than the AV approach. 
Considering the implementation of the encoding matrix, we 
observe that memory storage, though flexible, presents the 
worst area and power results among the proposed solutions. 
On the other hand, the FSM matrix generators are the best 
optimized circuits in terms of energy consumption, still the 
choice between these two approaches depends on the 
compression computation strategy. Though the 192 cycles 
implementation occupies a smaller area, its higher frequency 
rate in order to achieve the same runtime as the one with 32 
cycles makes it more power consuming; hence the latter will 
be considered for our final solution. Table IV presents the 
final results for each chosen module as well for the whole 
circuit considering both the AV and the NEO spike detection 
methods. 

The resulting power density is 136.9 µW/mm² and 170.14 
µW/mm² with the AV and the NEO spike detectors 
respectively, they are both inferior to 800 µW/mm², thus 
these circuits respect the power density constraint. The input 
rate is 384 kbps (24000 samples/s x 16 bits/sample), and, 
assuming an average spike firing rate of 100 spikes/s, we 
have 10.8 kbps (100 spikes/s x 6 words/spike x 18 bits/word) 
at the output which results in a 97.19% data rate reduction. 

Table V compares these solutions with previously 
proposed alternatives. For multi-channels solutions, only one 
channel is taken into account. Among all circuits, our 
implementations present the lowest area occupation. As well, 
they offer an excellent data compression rate. As an 
example, considering the data transmission consumption at 3 
nJ/bit [11] and the same input rate the transmission power 
dissipation, using our circuit for one-channel is reduced to 
32.4 µW whereas it achieves a minimum of 92.16 µW with 
the other referenced solutions. 

VII. CONCLUSION 

Starting from the results of [4] about the feasibility of the 
use of CS on BMIs for the compression of neural spikes, we 
have designed and analyzed a hardware detection and CS 
compression system. The results indicate a potential data rate 
reduction of approximately 97%, which greatly decreases the 
power consumption of wireless transmission in implanted 
BMI systems. This implementation represents a great 
improvement in terms of compression rate over the recently 
proposed alternatives. Future studies may include the final 

stages of circuit conception and tests in a real BMI 
environment. 
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TABLE III 
COMPRESSION COMPUTATION SYNTHESIS RESULTS 

Implementation Area Power 
Combinatory 40899.04 µm² 4.58 µW 

Seq. 32 Cycles 4306.9 µm² 561.5 nW 
Seq. 192 Cycles 3482.44 µm² 670.5 nW 

 

TABLE V 
COMPARATIVE TABLE 

References / 
Solutions 

Proces
s 

Area Power 
Data 

Reduct. 
Rate 

[4] 90 nm 0.09 mm² 1.9 µW 90% 

[6] 
500 
nm 

0.11mm² 75 µW 92% 

[7] 90 nm 0.06 mm² 2.03 µW 91.25% 
Solution AV 

65 nm 
0.009 mm² 1.25 µW 

97.19% 
Solution NEO 0.017 mm² 2.83 µW 
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