
  

  

Abstract— Relative fundamental frequency (RFF), defined as 

the normalized fundamental frequencies of vowels surrounding 

voiceless consonants, has been shown to have a characteristic 

pattern in healthy voices that differs from those with disordered 

voices (e.g. vocal hyperfunction, Parkinson’s disease). However 

no large-scale clinical study has been performed, mainly 

because the current estimation protocol requires trained 

technicians to manually perform this time-consuming task. In 

this study, we developed a method to automate RFF estimation 

and tested the algorithm on recordings from 12 healthy 

participants and 12 participants with Parkinson’s disease.  The 

means and variations of RFFs estimated using the automation 

algorithm were similar to the ‘gold standard’ estimates 

developed by two trained technicians. The mean squared error 

for the automated estimates, when compared to the ‘gold 

standard’ RFF estimates, were similar to those estimated 

manually by an additional trained technician. Future work will 

focus on improving vocal cycle detection and extending the 

automation to estimate RFF from instances in running speech. 

I. INTRODUCTION 

Relative fundamental frequency (RFF) is defined as the 

normalized (relative) fundamental frequencies of the vowels 

surrounding a voiceless consonant and can be measured from 

instances of speech with a vowel followed by a voiceless 

consonant and another vowel (VCV). RFF is an acoustic 

measure with a characteristic pattern that differs between 

healthy individuals and individuals with disordered voices 

(e.g. Parkinson’s disease [1], and vocal hyperfunction [2, 3]). 

The fundamental frequencies (f0) of ten vocal cycles before 

(offset of the first vowel) and after (onset of the second 

vowel) the consonant are normalized in semitones relative to 

the more steady-state portions of the vowels to account for 

individual pitch differences. The cycles preceding the 

consonant are normalized by the f0 of the first cycle (furthest 

away from the consonant) of the first vowel (vowel offset) 

and the cycles following the consonant are normalized by the 

f0 of the tenth cycle of the second vowel (vowel onset).  

Healthy young individuals tend to have stable or slightly 

increasing offset RFF as voicing transitions into the 

consonant and rapidly decreasing onset RFF [4-6] as voicing 

transitions out of the consonant. Individuals with voice 

disorders tend to have lowered onset and offset RFF 

compared to healthy individuals [1, 2]. Additionally, in 

individuals with Parkinson’s disease, RFF tends to be lower 
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for those off medication than those on medication [1]. 

Although these results suggest promise for the use of RFF in 

clinical diagnosis and assessment of voice disorders, no 

prospective large-scale study has been initiated. In part, this 

is likely due to the time-consuming nature of current RFF 

estimation procedures.  

RFF is typically estimated manually by one or two trained 

technicians using at most six VCV instances repeated two to 

six times per subject [1, 2, 7-9]. However, a recent study has 

shown that an increase in the number of instances used 

results in higher correlation with perceptual measures, and 

the use of six or more instances is necessary to provide a 

stable estimate [10]. Increasing the number of instances used 

will create an even larger barrier to clinical implementation 

of RFF. Thus, automated methods of RFF estimation are 

necessary to fully utilize this promising measure. 

Although the mechanism underlying the observed RFF 

has been hypothesized as the interplay of tension [11-14], 

aerodynamics [4, 15, 16], and vocal fold kinematics [17, 18], 

the contribution of each mechanism is not clear. Elucidation 

of the physiological mechanisms that result in the 

characteristic RFF in healthy individuals and the changes 

that occur to these mechanisms with voice disorders are 

essential for clinical validation of RFF. An automated 

algorithm for RFF estimation will promote future work to be 

carried out to determine the bases of RFF. 

In this paper, we will introduce a method to determine 

RFF automatically using selected speech samples containing 

a specific VCV, “ahfah” (/afa/). We tested our algorithm on 

speech samples from healthy young adults as well as speech 

samples from individuals with a disorder known to affect 

RFF (individuals with Parkinson’s disease).  

II. METHODS 

A. Recording procedure 

The algorithm was trained on a single group of healthy 
young adults and then tested on two groups: healthy young 
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Figure 1. Acoustic recording of the phonemes /afa/.  The fundamental 

frequencies of the offset and onset cycles can be used to estimate RFF. 
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adults and individuals with Parkinson’s disease (PD). The 
training group consisted of six adults (three female, three 
male) between the ages 23 and 28 (MEAN = 24 years, SD = 
2 years) all of whom reported no history of language, speech, 
or hearing disorders. The healthy young adult test group 
consisted of 12 adults (six female, six male) between the 
ages 18 and 24 (MEAN = 20 years, SD = 2 years). The PD 
test group consisted of 12 individuals with PD (five females, 
seven males) between the ages 41 and 82 (MEAN = 69 
years, SD = 11 years) all of whom had been diagnosed with 
PD for 1.5 to 14 years, but only one of whom specifically 
noted voice symptoms. Each participant was instructed to 
repeat the VCV instance /afa/ three times in their usual, 
comfortable voice. All participants were native speakers of 
American English. Recordings were performed using a head-
mounted microphone connected to a digital audio recorder 
sampling at 44.1 kHz and 16-bit resolution in a low-noise 
environment. 

B. Manual Data Analysis 

 Audio files were imported into Praat [19], a software for 
speech analysis. The pitch range was set to 60 - 300 Hz for 
male recordings and 90 – 500 Hz for female recordings. 
Default settings were used for all other parameters. 
Suitability of samples for RFF analysis was determined by 
two trained technicians.  

Onset and offset RFFs could be rejected by technicians for 
three reasons. First, a sample was rejected if the onset or 
offset contained misarticulations. Second, a sample was 
rejected if the first offset cycle or tenth onset cycle was not at 
steady state. Third, it was rejected if the phoneme was 
glottalized. Glottalized samples tend to have lower 
fundamental frequencies [20, 21] and irregular, often 
dicrotic, vibratory cycles [22-25], so they are not 
representative of typical RFF. Out of the three potential 
productions for each sample, the mean number of offset 
productions used for healthy individuals and individuals with 
PD were 2.9 (SD = 0.31) and 2.9 (SD = 0.28) respectively; 
the mean number of onset production used were 2.3 (SD = 
0.47) and 2.3 (SD = 0.72) respectively.  

The times (pulse timings) between ten adjacent cycles of 
voicing before and after the /f/ were extracted using Praat. 
The instantaneous fundamental frequency was calculated as 
the inverse of the difference between adjacent pulse timings. 
The instantaneous fundamental frequencies can be used to 
calculate the relative fundamental frequencies for all speech 
samples in semitones (ST) using (1) [26], in which f is the 
instantaneous fundamental frequency and fref is the steady 
state fundamental frequency. 

 
ST = 39.86*log10(f / fref)      (1) 

This pulse period selection and subsequent calculations 
were performed collaboratively by two experienced 
technicians. Their RFF estimates were considered the ‘gold 
standard’. A third experienced technician independently 
carried out the pulse period selection and calculation for all 
suitable samples. The technician’s RFF estimates were used 
to evaluate the inter-technician precision of manual analysis. 

C. Automated Data Analysis 

Audio files were imported into MATLAB for analysis. 
There were three main steps for automated analysis. First, 
the algorithm located the RFF instance in the speech sample 
(RFF Instance Selection). Second, it rejected the samples 
based on the criteria developed in manual analysis (detailed 
in section B; RFF Rejection and Estimation). Lastly, the 
algorithm estimated the RFF. 

RFF Instance Selection: The speech waveform was divided 

by the maximum absolute amplitude to normalize for sound 

intensity. A short-time Fourier transform was applied with a 

Hamming window of 20 ms and ~30% (265 samples) 

overlap. The signal powers for frequencies between 0 to 

5158 Hz were divided into 12 bins and used to train a 

logistic regression model to predict the probability that a 

sequence window was one of the two phonemes (/a/ or /f/) or 

silence.  

The recording always started and ended with a few 

seconds of silence, so the first and last five segments were 

assumed to be silences. The class of all other segments was 

determined as the one with the highest sum of the probability 

of the seven closest segments. Since there cannot be 

transitions from /f/ to silence or silence to /f/, when the 

program detected such a transition, it classified the point as 

/f/ or silence depending on the majority class of the four 

samples before and after the occurrence of the transition.  

After all the segments were classified, the algorithm 

located the positions of the onset and offset vowels in the 

instances /afa/. The start of the offset vowel was located 

where silence transitions to /a/ and the end was located 

where the /a/ transitions into /f/. The start of the onset vowel 

was located where the /f/ transitions into /a/ and the end was 

located where the /a/ transitions into silence. 

In some instances, speakers produced glottalized voicing 

instead of silence as they transitioned from one /afa/ to the 

next. When this occurred, the algorithm classified the end of 

the onset vowel in the preceding /afa/ and the start of the 

offset vowel in the subsequent /afa/ to be located about the 

middle of this glottalized voicing. 

 

RFF Rejection and Estimation: The MATLAB algorithm 

was interfaced with Praat to find pulse timings that occurred 

within a time window specified by the MATLAB algorithm. 

The pitch settings in Praat were changed automatically 

depending on the gender of the subject. All other parameters 

in Praat were set to default settings. RFF was estimated using 

two methods (autocorrelation and cross-correlation) and 

averaged.  

To find the offset pulse timings, the algorithm located the 

pulse timings in Praat between the start of the offset and the 

middle of the /f/. After this, the analysis window in Praat was 

zoomed to 25ms before and after the last sixteen pulses and 

the pulse timings were computed again. Similarly, to find the 

onset pulse timings, the algorithm located the pulse timings 

between the middle of the /f/ and the end of the onset. It then 

zoomed into an analysis window 25ms before and after the 

first sixteen pulse timings to find the onset pulse timings. 
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 The criteria for rejections were similar to the ones for 

manual analysis. Onset and offset RFFs could be rejected for 

three reasons. First, a sample was rejected if the onset or 

offset contained fewer than 15 cycles, because this suggested 

that the first offset cycle or tenth onset cycle was not at 

steady state. Second, a sample was rejected if the variance in 

the pulse periods was greater than 2.9*10
-6

, or if the pulse 

periods of the nine cycles not adjacent to the consonant were 

50% longer than 65
th

 percentile of pulse periods. These 

criteria prevented glottalized samples which tend to have 

irregular or longer pulse periods (lower fundamental 

frequency). If the 10
th

 offset or the 1
st
 onset pulse period 

satisfied the latter criterion, then the adjacent pulse period 

was considered the 10
th

 offset or 1
st
 onset pulse period and 

an additional pulse period was calculated. 

If the sample was usable, the differences between eleven 

adjacent pulse timings were taken to find the pulse periods, 

which subsequently were used to calculate the RFF in ST 

(see (1)). 

F. Evaluation 

The performance of the automation was assessed using the 
mean squared error (MSE) between the ‘gold standard’ RFF 
estimate and the automated estimate for each subject. 
Similarly, the MSE of the RFF estimated manually by the 
individual technician were also compared to the ‘gold 
standard’ RFF estimates. 

III. RESULTS 

A. RFF Estimation in healthy and PD populations 

Visual examinations of the means and 95% confidence 

intervals amongst the manual, automated, and ‘gold 

standard’ RFF estimates revealed similar trends (Fig. 2). The 

offset RFFs for both groups tend to be relatively stable or 

slightly decreasing, with somewhat higher variability in the 

control group. The onset RFF estimates for both groups tend 

to decrease as a function of cycle.  

In comparison to the gold standard, the means and 95% 

confidence intervals of automated RFF estimates were 

similar or slightly lower in most cases. The largest 

differences between the means were observed in offset 

cycles 9 and 10 and onset cycles 1 and 2 in the control 

group, and offset cycle 9 and onset cycle 1 in the PD group. 

Similarly, the means of the manual RFF estimates tend to be 

further from the gold standard estimates in the cycles close to 

the voiceless consonant. 

B.  Comparison of mean squared errors between manual 

and automated estimates 

 The MSE between the ‘gold standard’ RFF and the 
automated and independent manual estimations are shown in 
Figure 3. The MSE for automated RFF estimates was similar 
to those for the independent manual estimates in both the 
control group and the PD group, although in the control 
group the MSE varied as a function of offset/onset. In both 
automated and manual estimates, the MSE was higher for the 
control group than for the PD group.  

IV. DISCUSSION 

Previous research has shown RFF to differ in individuals 
with disordered voices when compared to individuals with 
healthy voices [1-3]. RFF in healthy voices tends to be 
higher than in disordered voices, which is most apparent in 
offset cycle 10 and onset cycle 1 (the cycles closest to the 
voiceless consonant). These results suggest the promise of 
RFF for clinical diagnosis of voice disorders. However, no 
large scale clinical studies has been carried out, likely due to 
the time-consuming nature of RFF estimation. Successful 
development of automated methods of RFF estimation could 
allow for RFF to be incorporated as a feature for objective, 
quantitative diagnosis of voice disorders. 

This paper describes an initial attempt to automate RFF 
estimation. The means and spreads of the RFFs estimated 
using the automated methods were similar to the ‘gold 
standard’ estimates provided by two expert technicians in 
most cases (see Fig. 2). In general, the MSE between the 
automated estimates and the ‘gold standard’ RFF were 

 
Figure 2. Top: Mean values of manual (dark navy) and automated 

(light pink) estimates of RFF in the control group. Bottom: Mean 

values of manual and automated estimates of RFF in the PD group. In 

both plots, the 95% confidence intervals of gold standard RFF 

estimates are plotted in the background. Error bars indicate 95% 

confidence intervals. 

 
Figure 3. Left: Control group average mean squared error (MSE) 

relative to the gold standard. Right: PD group average MSE relative to 

the gold standard. Error bars indicate 95% confidence intervals. 
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comparable to the ones between the manual estimates and 
the ‘gold standard’ RFF, indicating that a similar level of 
consistency can be achieved using automated estimation as is 
possible with manual estimation by a highly trained 
technician. 

Although this initial work is promising, further 
improvements can be achieved through more advanced 
algorithms for automation. The current algorithm 
occasionally misses the last offset and first onset cycles, 
which resulted in the lower RFF estimates observed in Fig. 2. 
We expect that this problem will be resolved in the future by 
combining the pulse timings that result from several analysis 
windows in Praat, because Praat detects different vocal 
cycles based on the analysis windows used. The current 
study used an average of the standard Praat autocorrelation 
and cross-correlation algorithms for pitch detection: future 
work will compare a variety of other pitch detection 
algorithms to determine which are optimal for automation. In 
addition, instead of checking for 15 cycles, the algorithm 
will directly check whether the last cycle is at steady state by 
comparing the instantaneous frequencies of the two cycles 
closet to vowel mid-sections (offset cycles 1 and 2 and onset 
cycles 9 and 10). 

Interestingly, although previous work has indicated that 
RFF is lowered in individuals with PD relative to those with 
healthy voices [1], we did not see lower RFF values in our 
PD group relative to our control group, whether estimated 
manually or automated. There are a number of potential 
explanations for this. The nine individuals with PD recruited 
in a previous study all reported symptoms of hypokinetic 
dysarthria, whereas the individuals in our PD sample were 
recruited irrespective of whether they had been diagnosed 
with any voice and/or speech disorder. In fact, only one of 
our 12 PD participants reported having voice or speech 
problems. Another potential reason for the similarity 
between our PD and control group data could be the 
difference in RFF stimuli used in our study relative to 
previous work. In our experiment, RFF was measured from 
non-speech samples, whereas in previous studies, RFF was 
measured from running speech. Our future work will extend 
our automation algorithms to be able to determine RFF in 
more complex speech samples (e.g. in running speech). This 
will promote additional studies to be carried out to determine 
the effects of speech context on RFF. 
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