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Abstract— Time-frequency decompositions (TFDs) are well
known techniques that permit to extract useful information
or features from EEG signals, being necessary to distinguish
between irrelevant information and the features effectively rep-
resenting the subjacent physiological phenomena, according to
some evaluation measure. This work introduces a new method
to obtain relevant features extracted from time-frequency plane
for epileptic EEG signals. Particularly, EEG features are
extracted by common spectral methods such as short time
Fourier transform (STFT) , wavelets transform and Empirical
Mode Decomposition (EMD). Then, each method is evaluated
by Stochastic Relevance Analysis (SRA) that is further used
for EEG classification and channel selection. The classification
measures are carried out based on the performance of the k-
NN classifier, while the channels selected are validated by visual
inspection and topographic scalp map. The study uses real and
multi-channel EEG data and all the experiments have been
supervised by an expert neurologist. Results obtained in this
paper show that SRA is a good alternative for automatic seizure
detection and also opens the possibility of formulating new
criteria to select, classify or analyze abnormal EEG channels.

Index Terms— Time-frequency analysis, EEG, epileptic
seizure detection, feature extraction, relevance Analysis.

I. INTRODUCTION

Electroencephalographic (EEG) signal processing provides

new insights to analyze, in more detail, the cortical activity

during the evaluation of different clinical disorders related

to epileptic seizures, some of which include quantitative

measures extracted from EEG signals, feature extraction,

and machine learning methods. Several authors have shown

that epileptic seizures can be decomposed into one or more

physical components, i.e., typical patterns or ictal rhythms

in mesial temporal lobe. Particularly, epilepsy appears as a

high voltage blunt or sharp 2−7 Hz theta rhythm over one

temporal region [1], [2]. Thus, EEG rhythm extraction can be

of benefit in detecting brain abnormalities such as epilepsy.

Different time–frequency (t–f ) and time-varying ap-

proaches have been proposed with the aim to follow the

modification of the EEG spectra during epileptic seizure

states, grounded on their discriminating capability of fre-

quency bands of EEG activity between normal and ictal

patients. In this way, there are different approaches proposed

for extracting EEG rhythms and spectral sub-band methods,

such as wavelet decomposition [3], Independent Component
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Analysis (ICA) [4], adaptive schemes [5], multi-dimensional

decomposition [6], and frequency dominant characterization

[7], among others. Nevertheless, all the extracted features

from enhanced t-f representations are analyzed by static

statistical approach and single EEG channel analysis, hence,

there is a missing a valuable information about the time-

evolving EEG process.

To improve the efficiency in EEG processing, in addition

to deal with multi-channel selection and highlight also the

most pertinent features of the EEG Data, it is necessary also

to see which parts of the brain are the most affected by some

abnormality. In this regard, weighted multi-channel EEG data

combination is discussed in [8], where component maximally

containing the power in the frequency range of interest is

extracted along with suppression of unnecessary frequencies.

Other proposed approaches of multi-channel selection have

been proposed, namely, [9], [10], [11]. However, since EEG

signals with epilepsy change continuously and to process ev-

ery EEG channel requires a long period of time, the extracted

data might be processed as stochastically dependent, and

thus, to apply a relevance measure capable of capturing the

dynamic information and keep valuable information missed

from time-evolving EEG analysis.

In this paper, we introduce a new relevance measure for

EEG classification and channel selection based on Stochastic

Relevance Analysis (SRA) [12] . The paper shows as SRA

distinguishes variables that represent effectively a “hidden”

phenomena according to stochastic variability measure, and

how these relevance measures could be used as a relevance

function to detect EEG channels with more seizure activity.

The effectiveness of our approach is presented for both EEG

segment classification problems and EEG channel selection

and is also tested for Short Time Fourier Transform (STFT)

and Wavelet transform (Wt). The classifier used is the well

known k-nearest neighbor (k-nn) algorithm.

II. PROCESSING METHODS

The proposed method comprises the following two steps:

i) Feature extractions from the enhanced EEG data by using

a given time-variant spectral methods (EMD, wavelet and

STFT), ii) Relevance analysis by the SRA, and iii) EEG

classification or channel selection (see Fig.1).

A. Rhythm extraction from enhanced EEG data

a) Short–Time Fourier Transform: The main goal in

time–variant decomposition is to separate the signal spectrum

into their constituent subspectral components, from which

the time–evolving rhythms are to be further estimated. The
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STFT introduces a time localization by using a sliding

window function, φ(t), going along with the signal y(t),
that is, Yφ ( f ) =

∫ ∞
−∞ y(t)φa,b( f , t)dt. So, the spectral density

of y(t), on the time–frequency plane, can be calculated by

means of the spectrogram:

Sy(t, f ) =

∣∣∣∣
∫

T
y(τ)φ(τ− t)e(− j2π f τ)dτ

∣∣∣∣
2

, Sy(t, f ) ∈ R
+ (1)

b) Wavelet Transform: This transformation is grounded

on the basis functions, constructed from shifted and scaled

versions of a given mother function φ(t) ∈ L2(R), keeping

the energy concentrated on short intervals of time–frequency

plane. The WT spectral density, equivalent to Eq. (1), is

performed by making time–frequency atoms, as follows:

φa,b(t) = a−1/2φ ((t−b)/a) , with a ∈ R
+,b ∈ R. Thus, the

WT of a given function y(t) is defined as:

WT{y(t)}= 1√
a

∫ ∞

−∞
y(t)φ ∗

(
t−b

a

)
dt (2)

Since WT can be expressed by the Fourier Transform

as WT{y(t)}= 1√
a

∫ ∞
−∞ Y (ω)Φ∗(aω)e jbω dω, then, it follows

that the WT is a smoothed version of the Fourier spectrum,

Y (ω). In conclusion, the spectral bandwidth of the WT

can be changed, and hence, the time resolution adjusts to

information speed, being this property the most significant

advantage of WT in the time varying spectral analysis.

c) Empirical Mode Decomposition: This adaptive

method aims at decomposing a given data into p ∈ N finite

and often small number data–driven basis zi(t), termed

intrinsic mode functions (IMF) for which the instantaneous

frequency can be defined everywhere. The signal y(t) is

represented by EMD, as follows:

y(t) =
p

∑
i=1

zi(t)+ rp(t)

where resultant components {zi(t) ∈R}, which are symmet-

ric with respect to the local mean value and have the same

numbers of zero crossings and extremes, are generated by

sifting iteratively the input data, that is, zi(t) = ri−1− ri(t);
and rp(t) is the final residue, with only one maxima and one

minima from which no more IMF can be derived.

B. Stochastic Relevance Analysis (SRA)

Instead of a widely used scalar–valued parameter set

extracted from the EEG signal, the EEG events, such as

epileptic seizures, are detected by using a vector set of time–

variant rhythm waveforms, {xxxn ∈R1×T : n ∈ p}, with, t ∈ T,
which carries temporal information of the non–stationary

EEG recordings. To analyze the discriminant capability of

EEG rhythmic activities on the seizure detection, priority

is placed on identifying the time evolution and structure

of the underlying subseries, and how they contribute to the

performance system. In other words, the contribution of each

rhythm must be analyzed and quantified carefully [13]. In

this regard, relevance analysis of input spaces is to be carried

out, being latent variable techniques widely used for this aim

that finds a transformation mapping p–dimensional stochas-

tic waveform arrangement, ΞΞΞ ∈ R
p×T , into p–dimensional

stochastic set, Ξ̂̂Ξ̂Ξ ∈ R
p×T , in such a way that the data in-

formation is maximally preserved. Besides, as the relevance

function, g ∈R, the evaluation measure of transformation is

given that distinguishes variables effectively representing the

subjacent physiological phenomena.

The stochastic waveform set, {xxxi}, is represented by the

observation assemble comprising N objects that are disposed

in the input observation matrix XXXΞΞΞ = [X1| · · · |Xi| · · · |XN ] . In

turn, every object, denoted as Xi, i = 1, . . . ,N, is described

by the respective observation set of time–variant vectors,

{xxx ji ⊂ΞΞΞ, j = 1, . . . , p}, such that, Xi = [xxx1i| · · · |xxx ji| · · · |xxxpi]
⊤ ,

Xi ∈ R
p×T , where vector xxx ji = [x ji(1) . . . x ji(t) . . . x ji(T )]

is each one of the measured time–variant rhythms from

EEG recordings, equally sampled evolving through time, and

being xi j(t), the j–th stochastic waveform for the i–th object

upon a concrete t instant of time. Given XXXΞΞΞ, there will be

a couple of orthonormal matrixes, UUU ∈ R
N×N ,VVV ∈ R

pT×pT ,
plus diagonal matrix ΣΣΣXXX , as well, so that a simple linear

decomposition takes place, i.e., XXXΞΞΞ =UUUΣΣΣXXXVVV⊤, where ΣΣΣXXX ∈
R

pT×pT holds p ordered eigenvalues ν of XXXΞΞΞ. The least mean

squared–based error is assumed as the evaluation measure of

transformation, g(XXXΞΞΞ, Ξ̂̂Ξ̂Ξ) ∼ minE {‖ΞΞΞ− Ξ̂̂Ξ̂Ξ‖2}, (being E {·}
the expectation operator), that is, the maximum variance is

preferred as relevance measure, when the following covari-

ance matrix estimation is carried out [12]:

cov{XXXΞΞΞ}= XXX⊤ΞΞΞ XXXΞΞΞ =VVV ΣΣΣ2
XXXVVV⊤ (3)

To make clear the contribution of each time–variant value

xi j(t), expression (3) can be further extended in the form,

XXX⊤ΞΞΞ XXXΞΞΞ = ∑
p
j=1 ν2

j VjVj
⊤, where Vj is the j–th column of

matrix VVV . Consequently, the amount of relevance captured

at every moment t by the singular value decomposition,

associated with the whole set of waveforms, is assessed as

the following time–variant relevance measure:

g(XXXΞΞΞ, Ξ̂̂Ξ̂Ξ; t) =
p

∑
j=1

|ν2
j Vj|, (4)

This relevance measure is capable of capturing the stochas-

tic information and is valid for considered cases of pathology

diagnosing from biosignal signals, for example, EEG epilep-

tic recordings.

III. EXPERIMENTAL SETUP

Fig. 1. A general scheme with the proposed approach for EEG classification
and scalp localization of seizure activity.

Fig.1 summarizes the experimental outline of proposed

approach: a) EEG data is enhanced by spectral methods;
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b) relevance coefficients are obtained by the SRA; and c)

classifier performance and channel selection are carried out

to determine the presence of epilepsy. The selected channels

are evaluated by both visual inspection of expert neurologist

and electrode placement on a topographic map.

A. EEG Database and setup

This work uses two EEG databases: the first one (termed

as DB1) holds six adult epileptic patients in a restful wake-

fulness stage and recorded at the Clinica Universitaria de

Navarra, Department of Neurophysiology (Pamplona, Spain)

[2]. The second collection (termed as DB2), which had been

recorded at the Instituto de Epilepsia y Parkinson del Eje

Cafetero (Pereira, Colombia) from 35 patients, holds 160

recorded scalp EEG signals (lasting 2-min) from 23-th, 24-

th and 25-th channels corresponding to electrodes placed

on the head according to the International 10-20 System

of Electrode Placement Standard. For both data collections,

recordings were acquired at a sampling frequency of 256 Hz,

with 12 bits resolution and all patients underwent clinical

examination by neurologist.

B. EEG feature extraction

In this work, we attempt to extract the frequency band

between 0.5 and 8 Hz, which is the most closely related

to epilepsy [1], [2]. This is accomplished using the time

frequency decomposition methods.The spectral decomposi-

tion methods were adjusted as follows: STFT with Gaussian

sliding window with 2.9 s [12], wavelets used a mother

wavelet (Db6) and 6 decomposition levels matching with

the set of needed frequency band boundaries according to

the aproach described in [14].The number of decomposition

levels for EMD were 8, using only those IMF’s that match

with the desired band.

Once extracted the band of 0.5 -8 Hz of each channel,

the relevance analysis is performed to determine the rel-

evance of channels with greater weight and influence of

epileptic seizure and then finding approximately the damaged

brain region. That band is used as a dynamic feature for

the classifier training. After obtaining the feature matrix,

Principal Component Analysis (PCA) is used as a feature

extraction method to reduce the high dimensionality of the

feature matrix. The number of principal components (PCs)

is selected based on the number of PCs that maximizes the

performance measures in the classifier. For this purpose, a

k-nearest neighbors (k-nn) classifier is employed, with k = 5.

Lastly, cross-validation procedure is used to evaluate the

performance of the proposed experiments, which consists in

dividing the database into 10 folds, each one with an equal

number of signals per class. The performance is measured

by means of the accuracy, sensitivity, and specificity [2].

IV. RESULTS

A. EEG Segment Classification

Table I shows classification results achieved with SRA

for DB1 and DB2 databases. Note that there is a high

performance classification with each method, STFT achieves

TABLE I

EEG SEGMENT CLASSIFICATION

k-nn Classifier Performance

D
B

1

Method Accuracy(%) Sensitivity(%) Specificity(%)

STFT 98.50±2.57 98.08±4.20 98.92±3.06
WT 97.44±1.65 98.87±0.41 97.00±3.16

EMD 97.85±0.42 97.56±1.31 98.79±0.74

D
B

2

STFT 95.62±1.35 94.24±2.26 95.56±3.28
WT 94.26±1.89 95.37±2.54 94.36±2.65

EMD 94.96±1.68 95.32±2.36 92.12±2.53

98.50% and 95.62% with DB1 and DB2 respectively;

wavelets (WT) achieves 97.44% for DB1 and 94.26% for

DB2; and EMD achieves 97.85% for DB1 and 94.96% for

DB2. These results show the effectiveness of SRA as a

relevance measure for time-frequency features. Also note

that the values in classifier performance are close to each

other, even though DB2 is more contaminated by artifacts

than DB1, which has a pre-processing to eliminate ocular

movements [15]. The proposed model becomes then stable

for EEG classification problems in the presence of noise.

B. Channel Selection

TABLE II

RELEVANCE MEASURES FOR EACH EEG CHANNEL BY STFT+SRA.

EEG
Patient

EEG
Patient

EEG
Patient

1 2 3 4 5 6

F4 0.33 0.63 Fp1 0.19 F4 0.29 0.23 0.62

FP2 0.36 0.50 F3 0.08 Fp2 0.33 0.14 0.49

F3 0.44 0.21 C3 0.32 F3 0.24 0.31 0.17

FP1 0.44 0.24 P3 0.37 Fp1 0.45 0.15 0.41

T6 0.37 0.45 O1 0.39 T6 0.33 0.34 0.31

T5 0.76 0.25 F7 0.28 T5 0.36 0.14 0.54

O2 0.38 0.45 T3 0.36 O2 0.11 0.36 0.36

O1 0.39 0.27 T5 0.19 O1 0.26 0.45 0.28

F7 0.40 0.28 Fp2 0.17 F7 0.87 0.48 0.37

F8 0.27 1.00 F4 0.72 F8 0.37 0.21 0.74

T3 0.86 0.29 C4 0.72 T3 0.63 0.70 0.39

T4 0.23 0.75 P4 0.68 T4 0.39 0.17 0.84

C4 0.25 0.47 O2 0.57 C4 0.42 0.23 0.17

C3 0.73 0.31 F8 0.44 C3 0.21 0.26 0.21

P4 0.37 0.16 T4 1.00 P4 0.45 0.33 0.25

P3 0.72 0.35 T6 0.86 P3 0.60 0.17 0.29

Cz 0.68 0.37 Fz 0.44 Cz 0.69 0.24 0.55

Pz 0.57 0.45 Cz 0.41 Pz 0.70 0.17 0.48

T1 1.00 0.50 Pz 0.40 T1 0.77 0.18 0.17

T2 0.22 0.57 A1 0.10 T2 0.45 1.00 0.77

Fz 0.41 0.68 A2 0.76 A1 0.84 0.09 0.33

T1 0.02 A2 0.46 0.91 1.00

T2 0.39 Fz 0.38 0.12 0.45

Table II shows the estimated stochastic relevance values

for each EEG channel (DB1 data), computed by the SRA

and STFT which is the combination that achieves the best

classification results (see Table I). Values in bold type are

those selected by neurologist through a visual inspection.

Note the correspondence between high values obtained by

SRA and EEG channels chosen by visual inspection. Fig. 2

(upper) shows corresponding channels selected by spectral

methods and stochastic relevance (SRA) with the visual

inspection on the scalp topographic map at patient 1 in

DB1 database. As seen, high values achieved by all methods

correspond to channels chosen by the neurologist through

visual inspection. The Fig. 2 (bottom) depicts relevance
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values obtained for each DB1 channel at the patient 1

by Wt, STFT and EMD methods. Note that the relevance

measures for all methods successfully selects the channels

with more seizure activity (T1, T3, and T5) showing the

highest relevance values. All results show that the method

provides a better medical interpretability about the location

of the epileptic region.

Localization of channels with high relevance values in single  EEG data
(Pacient 1)

Channels by visual inspection

(T1, T3 and T5)

Channels by stochastic relevance

(T1, T3 and T5) 

F4 F´2 F3 F´1 T6 T5 O2 O1 F7 F8 T3 T4 C4 C3 P4 P3 CZ PZ T1 T2 FZ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
EMD

Wav

STFT

Fig. 2. Upper: Localization of the channels selected on scalp topographic
map of STFT with SRA. Black areas represent a highest energy concen-
tration than grey areas. Bottom: Relevance values obtained by spectral
methods. Note that EEG channels with high stochastic relevance (bottom)
correspond to those manually located on epileptogenic region (upper).

V. CONCLUSIONS AND FUTURE WORK

A new method for relevance analysis in classification and

channel selection for EEG multi-channel data with epilepsy

is proposed. This method is based on Stochastic Relevance

analysis of brain rhythms and has been tested with different

spectral methods of the state of the art. Achieved results

show that proposed method is a suitable alternative for

classification of EEG segments and selecting EEG channels

with seizure activity. The main advantage compared with

other methods lies in its high performance in selecting

epileptic channels, its adaptability for any spectral method,

and its high accuracy with noisy EEG. The achieved results

in channel selection, which are validated by experts through

visual inspection and the scalp topographic map, show that

SRA really provides an adequate approximation for epileptic

channel localization, offering to medical environment an

alternative to medical support in epileptic region localization.

For the considered SRA as relevance measure, future work

includes: comparing our approach with others relevance

analysis methods proposed in the state-of-the-art; exploring

other brain abnormalities such as Alzheimer, sleep disorders

and dementia; exploiting the features for epileptogenic region

analysis, and consider the feasibility of our method to seizure

anticipation.
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