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Abstract— In this study, we present a neuro-fuzzy approach 

of seizure prediction from invasive Electroencephalogram 

(EEG) by applying adaptive neuro-fuzzy inference system 

(ANFIS). Three nonlinear seizure predictive features were 

extracted from a patient’s data obtained from the European 

Epilepsy Database, one of the most comprehensive EEG 

database for epilepsy research. A total of 36 hours of 

recordings including 7 seizures was used for analysis. The 

nonlinear features used in this study were similarity index, 

phase synchronization, and nonlinear interdependence. We 

designed an ANFIS classifier constructed based on these 

features as input. Fuzzy if-then rules were generated by the 

ANFIS classifier using the complex relationship of feature 

space provided during training. The membership function 

optimization was conducted based on a hybrid learning 

algorithm. The proposed method achieved highest sensitivity of 

80% with false prediction rate as low as 0.46 per hour.  

I. INTRODUCTION 

Epilepsy is one of the most common neurological 

disorders that affect 1-3% of the world’s population. In the 

United States, almost 200,000 new cases of Epilepsy are 

diagnosed every year [1]. The estimated clinical cost related 

to epilepsy and seizure is approximately $17.6 billion [1]. 

Hence, a desirable solution is to prevent the side effects of 

seizure attacks by predicting the attack time few minutes to 

several hours earlier before a seizure event happens. A 

warning device equipped with a highly efficient and reliable 

prediction algorithm would significantly improve the life of 

an epilepsy patient as well as lower the economical effect of 

prevalence of epilepsy. 

 Growing number of literature demonstrate the possibility 

of seizure prediction with varying degrees of limited 

success. The large number of algorithms found in literature 

can be classified into several broad categories. First of all, 

most of the methods developed are based on applying a 

threshold procedure to a seizure prediction method, such as 

phase synchronization [2]. Another group of study applied 

 
 

 

Manuscript received February 1, 2013. This work was supported in part 
by the North Dakota Space Grant Consortium and ND EPSCoR under Grant 
#EPS-0814442.  

A. F. Rabbi is with the Biomedical Signal and Image Processing 
Laboratory, Electrical Engineering Department, The University of North 
Dakota, Grand Forks, ND 58202 USA (e-mail: ahmed.rabbi@my.und.edu). 

L. Azinfar, is with the Biomedical Signal and Image Processing 
Laboratory, Electrical Engineering Department, The University of North 
Dakota, Grand Forks, ND 58202 USA (e-mail:leila.azinfar@my.und.edu). 

R. Fazel-Rezai is with team Biomedical Research And INovation 
(BRAIN) and the Director of Biomedical Signal and Image Processing 
Laboratory, Electrical Engineering Department, University of North 
Dakota, Grand Forks, ND 58203 USA (e-mail: reza@engr.und.edu . phone: 
701-777-3368, fax: 701-777-5253). 

clustering based techniques [3]. In machine learning based 

approaches, artificial neural network (ANN), support vector 

machine (SVM) classifiers were used with multiple features 

[4], [5]. These algorithms make use of multiple 

characteristic features extracted from EEG recordings. 

However, they are supervised in nature and require training 

from pre-ictal and ictal datasets. In another approach, 

combining epileptic seizure prediction methods using 

Boolean “AND”/“OR” logic was proposed and the 

superiority of this method over a single method was shown 

[6]. Recently, a patient specific rule-based approach on 

spatial and temporal combination was proposed [7]. A fuzzy 

rule-based system was proposed for epileptic seizure 

detection from intracranial EEG for taking advantage of the 

combination in the feature domain as well as in the spatial 

domain [8].  In a previous study, we applied adaptive rule-

based fuzzy inference systems in seizure onset detection 

from intracranial EEG [9]. Fuzzy membership parameters 

were optimized using fuzzy c-means clustering and fuzzy if-

then rules were developed based on human knowledge 

reasoning for temporal-spatial combination of the features 

and the channels [9]. 

The approach of combining multiple methods might open 

up new possibilities in prediction research. Application of 

fuzzy logic based approaches can be very useful as Boolean 

logic can combine only two methods. Although it is not 

proven clearly that linear feature extraction methods are 

better than nonlinear dynamical systems based methods [9], 

the prediction studies are biased in utilizing the exciting 

computational aspects of nonlinear dynamical systems based 

methods in quantifying the subtle and rather smooth changes 

in brain dynamics toward seizures [6]-[14]. In a previous 

study, we developed a fuzzy rule-based soft threshold 

method applied to correlation dimension features extracted 

from intracranial EEG [15]. 

This paper introduces the application of adaptive neuro-

fuzzy inference system (ANFIS) in epileptic seizure 

prediction. The approach combines multiple epileptic seizure 

predictive features, both nonlinear univariate and bivariate. 

We applied an ANFIS network to combine the feature 

patterns in identifying the pre-ictal state [16], [17]. ANFIS 

efficiently performs the nonlinear input output mapping by 

taking account the complex relationships of the feature space 

[16], [17]. The advantage over other classification 

techniques, such as ANN, is that it provides the output as a 

linear regression time series rather than integer values 

representing classes. This aspect of ANFIS is advantageous, 

as it allows the performance analysis within the framework 
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of seizure prediction characteristics [18]. Moreover, ANFIS 

is capable of accommodating human knowledge and 

reasoning as well as machine learning capabilities [16], [17].  

II.  METHODS AND MATERIALS 

A. EEG Datasets 

The EEG datasets used in this study were obtained from 

the recently available one of the most comprehensive 

Epilepsy EEG databases, the European Epilepsy Database 

[19]. The database provides long-term EEG recordings (both 

surface and invasive recordings) [19]. EEG datasets were 

selected from one of the patient’s (Patient id # FR_253) data 

for feature extraction which included long-term recordings 

with 7 seizures. All the 7 seizures available for this patient’s 

EEG recordings were analyzed. A total 36 hours of EEG 

recordings having 7 seizures were used for feature 

extraction. The data sets were divided into three sets for 

training and testing purpose as described in sub-section D. 

Since identification of the pre-ictal state in the intracranial 

recording was the goal, at least three hours of recordings 

prior to a seizure event were taken for each analyzed seizure.  

B. Preprocessing 

EEG recordings were analyzed using a sliding window 

analysis technique [2]. The length of each window was 10 

sec with 5 sec overlap between the adjacent windows. To 

reduce the high frequency noise and low frequency artifacts, 

a fourth order digital Butterworth IIR bandpass filter was 

applied to all the EEG segments in all channels. The cutoff 

frequencies were set at 0.5 Hz – 100 Hz. In addition, to 

remove the effect of power line noise, a second order notch 

filter at 60 Hz cutoff frequency was applied. For both the 

filters zero phase digital filtering was used.   

C. Feature Extraction 

One univariate and two bivariate seizure predictive 

features were extracted from two channels located in the 

epileptic region.  

1) Univariate Nonlinear Features: Dynamical Similarity 

Index (DSI) quantifies the changes in dynamics of a test 

window relative to a constant reference window [10]. It was 

described by Le Van Quyen et al. in 1999 and applied to 

EEG signals in identifying preictal state from interictal 

baseline [11]. This feature had also been applied in pre-ictal 

state identification in rat EEG [13].  

2) Bivariate Nonlinear Features: Bivariate features are 

known to be more sensitive in detecting pre-ictal changes 

[10]. Two bivariate features, nonlinear interdependence, and 

mean phase coherence were extracted from two channels 

located in the epileptic region [12], [20]. The nonlinear 

interdependence is considered as a measure of generalized 

synchronization between two EEG signals from different 

channels whereas mean phase coherence is known as 

measure of phase synchrony. Generalized synchronization 

occurs when the dynamical state of one of the coupled 

oscillators is determined by the other oscillator. On the other 

hand, phase synchronization measures the phase difference 

between two coupled chaotic oscillators. Mormann et al. 

reported significant decrease in mean phase coherence prior 

to a seizure event [12].  

D. Preparation of Data for ANFIS training and testing 

 A total of 35 hours of invasive EEG data having 7 
seizures were used for evaluation of the algorithm from 
recordings for one patient (patient id # FR_253) [19]. Data 
were divided into two portions for two-fold validation 
purpose. The training and checking dataset each contained 1 
seizure with interictal and preictal recordings. The length of 
the training and checking dataset was 4.74 and 5 hours 
respectively. The ANFIS model was tested on the rest of the 
dataset which contained 5 seizures with total length of 26.12 
hours.  

E. Application of ANFIS 

ANFIS is a Sugeno type fuzzy inference system with 

added neural-network learning capabilities proposed by 

Roger Jang in 1993 [16]. The antecedent or the premise part 

is linguistic in nature. Thus, the premise part performs 

qualitative fuzzy reasoning. The consequent parameter is a 

liner function of the input variables. Fuzzy if-then rules 

performs the logic “AND” operations on the inputs 

provided. The fuzzy if-then rules are defined as follows: 
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where (Ü :E L sátá å áv; is the input, #Ü, $Ü, %Ü, and &Ü are 

the fuzzy sets, and LÜ, MÜ, NÜ, OÜ, and PÜ are the linear design 

parameters. The linear parameters are adaptable. A 

simplified ANFIS architecture with four inputs and one 

output is shown in Fig. 1.  

 For simplicity, all the nodes in layer 2, layer 3, and layer 4 

were not shown. The square nodes are adaptive whereas 

circular nodes are fixed [16]. Fuzzifications of the input 

variables are performed in the first layer and all the nodes of 

the first layer are adaptive nodes. Fuzzy input membership 

function parameters and the design parameters were 

optimized using a hybrid learning algorithm as described by 

Roger Jang [16].  

 The outputs of the first layer are the fuzzy membership 

grades of the inputs. The membership grade parameters are 

used to adaptively estimate the membership grades during 

training to better map the input/output relationships. The 

second layer nodes perform the product operation (logic 

operation “AND”) to calculate the firing strength of each 

rule. The third layer performs the data normalization. The 

fourth layer performs the following operation. 

 

 1E
v
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where SÜ is the output of the previous layer, (Ü :E L

sá tá å á v; is the input, and <LÜ áMÜ á NÜ á OÜ á PÜ= is the first order 

polynomial parameter set [16], [17].  
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 The polynomial parameters represent the first order 

Sugeno type fuzzy model. The final layer consists of a single 

node, 5 which is responsible for performing the summation 

of all the incoming signals coming from previous layer. This 

fuzzy output variable which is a mapped output of all the 

input features was used for issuing the seizure prediction 

alarm. The algorithm was simulated in MATLAB® 7.8. 

III. RESULTS AND DISCUSSION 

A threshold procedure was applied to the final fuzzy 

output variable to convert it to an alarm space. Since it is 

better to predict a seizure then to miss it, the threshold 

parameter was optimized for better sensitivity and lower 

false positive rates. In post-processing step, short length 

predictions were minimized by setting up a criterion. The 

short length predictions might be due to the inherent noise or 

artifacts in the EEG recordings. The primary alarm time 

series is processed in a minute-by-minute basis. A criterion 

was set that no prediction results smaller than 35 seconds 

will be considered as true predictions. This value was found 

empirically to obtain the best results. In addition, when an 

alarm was issued no further alarms were produced for the 

duration of the specified seizure prediction horizon (SPH). 

The SPH duration were varied from 15 to 45 minutes with 

15 minutes step size. If an alarm is followed by a seizure 

event the alarm is considered as true positive. Otherwise, the 

alarm was considered as false positive. 

The temporal patterns of the features for the training and 

testing datasets are shown in Fig. 2 and Fig 3 respectively. 

The checking dataset was used as a safeguard against over 

fitting of the model during the training. Finally, the 

algorithm was tested on out-of-sample testing data set.  

 
 Fig. 2. The temporal profile of three features, dynamical similarity index 

 (DSI), mean phase coherence (MPC), and nonlinear interdependence, S 

 (NIS) extracted from 22 hours of test data. The start and stop time of the 

 seizures are marked by red vertical lines. 

 Fig. 3. The temporal profile of the three features extracted from 4.12 

 hours of  continuous recording which constituted testing dataset. The 

 start and  stop time of seizure are marked by red vertical lines. 
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Fig. 1. The ANFIS architecture for four inputs with three membership functions and one output. For simplicity, not all the nodes of the middle 
layers (layer 2, layer 3, and layer 4) were shown. There would be a total 27 nodes in the middle layers.
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Fig. 4. Final input membership functions after hybrid training. Three 

 levels were considered for fuzzifications of the input feature variables, 

 low, medium, and high.  

 

The input membership functions after training are shown 

in Fig. 4. We analyzed results for three different values of 

seizure prediction horizon (SPH) and the results are 

presented in the following Table 1. 
TABLE I 

SENSITIVITY AND FALSE PREDICTION RATE PER HOUR WITH VARYING 

LENGTH OF SEIZURE PREDICTION HORIZON 

SPH (min) Sensitivity (%) FPR/h 

15 20 1.15 

30 40 0.73 

45 80 0.46 

IV. CONCLUSION AND FUTURE WORK 

The preliminary results demonstrate the applicability of 

the ANFIS in seizure prediction. To significantly advance 

the area of seizure prediction, several important aspects of 

this problem should be considered. The evaluation of a 

seizure prediction algorithm requires to be performed in 

long-term out of sample recordings. In this paper, we have 

tested our algorithm on data different from the training data 

set. The algorithm was trained on a different data set than 

the testing data. The threshold parameter was determined 

statistically by fitting a normal distribution to a reference 

window selected from the fuzzy output variable. This 

threshold parameter is tunable for performance optimization. 

Combination of multiple features could open up new 

window of possibilities in prediction research [6]. ANFIS 

model or similar neuro-fuzzy approach can be very useful in 

achieving such goals as these approaches are capable of 

providing a way to take advantage of both the human 

knowledge reasoning and machine learning capabilities.  

In future, we will apply similar methods with better post-

processing to the rest of the 29 patients’ data available in the 

European Epilepsy Database. This would allow studying the 

inter-patient variability and analyzing the performance of the 

adaptive capabilities of the algorithm. Finally, we will 

attempt to analyze the performance of the algorithm against 

a random predictor and within the frame work of the seizure 

prediction characteristics [18]. 
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