
  

  

Abstract—Several types of electric motor assists have been 
developed, as a result, it is important to control muscular 
fatigue on-site in terms of health promotion and motor 
rehabilitation.  Predicting the perceived fatigue by several 
biosignal-related variables with the multiple regression model 
and polynomial approximation, we try to propose a self control 
design for the electrically assisted bicycle (EAB).  We also 
determine the meaningful muscles during pedaling by muscle 
synergies in relation to the motion maturity.  In field 
experiments, prediction of ongoing perceived physical fatigue 
could have the potential of suitable control of EAB.  

I. INTRODUCTION 

Wearable and wireless measuring units and sensors [1, 2] 
as well as feedback systems [3] have been developed for the 
ubiquitous promotion of health and motor rehabilitation.  
However, these technologies are still limited in use because 
they are relatively expensive.  This might be one of the 
reasons why subjectively presenting approaches instead of 
objectively measured data are used for recognizing the status 
of functional activities, instead of objectively measured data.  
The same thing has occurred in designing the power assistive 
systems.  Several types of power assist systems have recently 
been proposed [4-6].  We have tried to develop a wearable 
unit for use as a biosignal-based control system, such as the 
cycle ergometer for the elderly [7] and electrically assisted 
bicycles (EAB) [8].  An assist system was created for the 
cycle ergometer that uses a fuzzy system that refers to the 
functional activities, such as the heart rate (HR) or rating of 
perceived exertion (RPE) to customize the workload pattern.  
On the other hand, the power assist design for the EAB has 
still not been created because it needs a control mechanism 
that can respond to both physical and topological variation 
changes.  That is, where and when the power assist is 
required based on the functional activity needs to be 
considered in the design process. Thus, it needs on-site 
physical fatigue assessment.  Guidelines for the speed, 
amount of power assist, and cadence are needed in the 
selection of an appropriate power assist mode (assist on/off, 
eco mode, and power assist mode) [9].  Thus, biosignals such 
as HR, VO2max, and perceived exertion were used.  A suitable 
type of power assist is expected when the muscle force for 
pedaling is insufficient, especially during uphill road 
climbing, where muscle fatigue causes a decrease in speed 
and cadence [10].  Using biosignals to estimate the amount of 
physical fatigue to control the amount and type of power 
assist has been proposed [6, 8, 9, 11].  We have tried to 
design a power assist system that is based on the physical 

 
*Resrach supported by JSPS KAKENHI Grant Number 23650348. 
Manuscript received April 2, 2013.  T. Kiryu and H. Minagawa are with 

Graduate School of Science and Technology, Niigata University, Nishi-Ku, 
Niigata, 950-2181 Japan (e-mail: kiryu@eng.niigata-u.ac.jp).   

fatigue estimated from the surface EMG (SEMG).  There 
have been exoskeleton-type motion assist system [12] and 
ones for walking restoration [5, 13, 14].  Since enough power 
is obtained from these power assist systems, we now must 
focus on the design of the assist timing.  Note that there are 
several types of delays between a motor command and the 
actual motion.  However, suitable on-site muscle force and 
timing information for supporting degenerated muscle force 
for EABs is needed.  There are gaps between the 
measurement and control due to several different biosignal 
time-scales.  As a result, biosignal-based assist control delays 
should be considered [15].  Therefore, several ideas were 
suggested, such as adjusting the assist timing based on the 
crank angle and muscle activity [13], fuzzy control [4, 7], and 
feedback control by predicting VO2max for controlling the 
cadence and power tracking control, to cope with this 
problem [16].  Prediction of the muscle activity is imperative 
for supporting muscle force when it is insufficient for a given 
motion before failure point is reached.  There have been 
many studies for the estimation of muscle fatigue based on 
both the time and frequency domains.  The key point is to 
design a measurement and control system that estimates and 
predicts the amount of fatigue based on the given biosignals, 
and then providing enough assistance in time.  

The workload or assistance pattern for EABs is 
predetermined as a function of the biomechanical or physical 
parameters, such as the cadence or joint angles.  Since 
individual differences in physical work capacity and the 
occurrence of muscle fatigue are not fully considered, there 
are occasions when the support for a needed assist and the 
assist timing is insufficient.  This is the reason why we have 
tried to develop a biosignal-based power assist control system 
as a promising technology for providing the appropriate 
exercise levels for individuals in continuous exercise for the 
promotion of health and rehabilitation. 

We tried to design a perceived physical fatigue dependent 
power control system for EABs in this study that is based on 
the feedback from the physical activities estimated from 
biosignals.  First, we arranged for the ubiquitous 
measurement and evaluation of SEMG during dynamic 
exercise, by using the idea of muscle synergies.  Second, we 
used biosignals to design a perceived physical fatigue-based 
workload control system.   

II. METHODOLOGY 

A. Biosignal Sensors Placement 
The proper muscle activity during dynamic contractions 

will not be evaluated if the SEMG electrodes are placed in 
the wrong locations [7]. Thus, we started by measuring the 
bipolar SEMG signals from 15 channels array electrode 
during a squat exercise in which each electrode was placed 1 
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cm from the next (EMG-16, OT Bioeletronica).  We placed a 
surface electrode on the skin that was separate from the 
active innervation zones after first detecting their locations.  
This approach was further confirmed by comparing three 
types of electrodes (two-bar, array, and matrix) during 
exercise in terms of the estimation of the conduction velocity 
of the motor unit action potential. 

We recorded the ECG using a chest electrode V6 and the 
bipolar SEMGs from the lower limbs.  The measurement 
system was composed of a 16 channels wireless unit 
(Myomonitor IV, Delsys) with the two-bar active electrodes 
(DE-2.1, Delsys) for the SEMG signals.  Both the ECG and 
SEMG were sampled at 2000 Hz at a 16-bit resolution using 
the attachment software (EMGWorks 3.5, Delsys). 

B. Evaluation of Muscle Activity during Exercise 
We investigated the muscle activity in terms of a profile 

[18, 19] by sliding the motion dependent interval (e.g., 50 
msec) every 10 msec for each pedal stroke.  The profile was 
further normalized by using both the interval and the 
maximum amplitude in a trial after expressing the profile as a 
function of the knee joint angle or elapsed time for each 
stroke.  Then the synchronously averaged percent profile for 
a segment consisted of several tens strokes in each phase.  
The parameters are the averaged rectified value (ARV), the 
root mean square (RMS), and the integrated EMG (iEMG).  
In addition, the mean power frequency (MPF) was estimated 
for each stroke.  The muscle synergies are identified form 
synchronously averaged %RMS profiles in each phase.  The 
torque, cadence, and speed were also estimated for each 
pedal stroke for evaluating the physical fatigue. 

C. Muscle Synergies during Exercise 
A similar motor control behavior by the 

agonist/antagonist muscle pairs is expected during the squat 
exercise.  Target muscle identification was achieved by 
focusing on the muscle synergies, leading to the following 
process.  We estimated the muscle synergies by looking at 
the non-negative matrix factorization in order to compare the 
behaviors of the agonist/antagonist muscle pairs.  Assuming 
the %RMS profile V (i x j) from j muscles is modeled as 

V !  WH          (1) 

where W (i r) is muscle synergy profile, and H (r j) is the 
weight matrix.  Then, setting the k-th vector of H as hk, 
the %RMS profile at the k-th muscle is obtained as follows: 

vk !   Whk             (2) 

We focused on the motion features of the knee joint 
during cycling by analyzing the k-th %RMS profile 
estimated from the k-th weight and synergy matrix.  To 
identify the maturity and skill level, we used the correlation 
coefficients (CC) between the averaged %RMS of individual 
muscles and the muscle synergy profiles estimated from 
each group.    

D. Subjective muscle fatigue Supported by Objectively 
Measured Data during Cycling 

It should be noted that the measured data are affected by 
the location of the sensors [20].  Thus, information on the 
muscle activity is sometimes limited, although the measured 

biosignals are objective.  Then, subjective data is important 
when it properly reflects the given situation of a vital 
function, such as physical fatigue.  A multiple regression 
model is used to relate subjectively perceived fatigue with 
objectively measured data.  The perceived physical fatigue 
for cycling could be modeled by referring to the incline of the 
slope geography [21].  The measured data would include HR 
and muscle activity variables.  The multiple regression 
equation produces the time-series of the subjectively 
perceived fatigue. The perceived fatigue is assumed from the 
incline of the slope geography and modeled using the 
multiple regression equation using the HR, ARV, and MPF 
as follows: 

Perceived fatigue = aARV + bMPF + cHR + d            (3) 

Further estimating the perceived physical fatigue as a 
function of time with a polynomial approximation produces 
the time-series from the previous several tens of cycling 
strokes.  Then, it predicts the perceived physical fatigue 
every second by formularizing the time-series of the 
perceived fatigue by using the polynomials of the variables. 

III. RESULTS 

The participants were informed of the risks involved in 
advance, and their ECG and muscle activity were monitored 
during the experiments.  Each participant was further 
checked every ten strokes to determine whether or not the 
Borg’s RPE [22] as a subjective index was over 20. 

A. Muscle Synergies for determining Target Muscle 
We used the muscle synergies from the muscle activities 

for eight agonist/antagonist lower limb muscles (vastus 
lateralis (VL), vastus medials (VM), biceps femoris (BF), 
semimembranosus (SEM), tibialis anterior (TA), 
gastrocnemius medials (GM), gastrocnemius laterials (GL), 
and soleus (SOL)) [23] to recognize the motion with the 
lower dimension. The subjects were asked to try to control 
the knee-joint extension and flexion every 4 s for up to 100 
knee contractions during the squat exercise.  Depending on 
the skill level, each subject showed a different habit to 
compensate for muscle fatigue.  The habits include a 
multi-joint control for sustaining the given posture against the 
muscle fatigue.  Five mature active rugby members and five 
immature university students were chosen in advance as the 
subjects for the estimation of the muscle synergies during the 
squat exercise.  

The results showed that the third synergy showed a peak 
at the maximum knee flexion against the first synergy like 
that for a co-contraction during a full squat, which is different 
from those during a quarter squat and a parallel squat.  The 
BF muscle showed an explicit significant difference in CC 
for the first and third synergies during a full squat.  A peak 
appeared around the maximum knee extension and high 
factor loading occurred for the VL, VM, and TA muscles for 
the first synergy (#1).  A peak appeared for the flection first 
and the extension last for the second synergy (#2). Using CC 
and the factor loadings, synergy #1 related to an agonist 
muscle contraction, whereas synergy #2 showed antagonist 
muscle contraction.  For the matured subjects, the muscle 
activation pattern for BF approached that for a reciprocal 
contraction of VL [18, 23].  
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B. Measurement of Biosignals during Cycling 
The employed EAB is designed to produce additional 

crank torque that is the same level as the rider-generated 
torque: (1:1) power assist.  We used a 2100-m long circuit 
divided a 600-m uphill road into three phases (early, middle, 
and late phases including several tens (30-60) of consecutive 
contractions with different inclinations.  Each trial was 
separated by 20-min rest intervals.  Each participant was 
asked to keep the pedaling rate as close to 60 rpm as 
possible.  We recorded the SEMG from the BF, VL, TA, and 
GM muscles during cycling.   

 Figure 1 shows the %RMS profiles for both daily 
exercise routine (ER) and non-ER subjects of VL and BF 
muscles, respectively.   The cycling ER participant showed 
significant changes in muscle activity of VL.  On the other 
hand, the non-cycling-ER participant showed changes in BF, 
which were similar to the results during squatting. We 
identified what muscle should be monitored using the 
estimated ARV and hk during cycling outdoors (Figure 2).  
There was a significant decrease in the ARV and hk of VL 
for each phase, but not for BF.  On the other hand, the 
decrease in BF for each phase was significant for the 
non-ER subject, the decrease for BF in each phase was 
significant.  As a result, EAB effect on the muscles was high 
for the VL and BF for the ER subject and the non-ER 
subject, respectively.  

 
 Subj. ER                            Subj. non-ER  
 
                                      p <0.05 

      

 

 

 

 
 

 

     

 

 

 

 

 

 

 

 

C. Subjective muscle fatigue Supported by Objectively 
Measured Data during Cycling 
Figure 3 demonstrates the slope geography for the up-hill 

road section near the middle of our 20-min cycling circuit 
path.  We used the personal customizing design process on 

two of the recruited subjects in the field experiments based 
on our noted conditions.  

In this feasibility study, a polynomial approximation of 
the ARV time-series was used as the perceived physical 
fatigue because ARV was significant.  Figure 4 shows a 
second order polynomial approximation of the ARV 
time-series.  We preceded to use 5 to 15 s intervals for our 
predictions. 

 

 

 

 

 

 

 
 
 
 

 
     (a) around lower corner in a early phase        (b) around high corner in a late phase      
 
  
 

IV. DISCUSSION 

A. Muscle Synergies 
Since the knee-joint extension and flexion every 4 s was 

strictly periodical for the rugby members during the squat 
exercise, the maturity could be related to the small s.d. and 
small order of the synergy profile [19].  In addition, a high 
CC was considered to be like that associated with maturity 
and a further skill level.  Since the BF muscle showed an 
explicitly significant difference in CC for the first and third 
synergies during a full squat, the muscle synergy pattern of 
BF could be an effectual evaluation index for better 
understanding the training skills; for the outdoor experiment, 
the muscle activation pattern showed a reciprocal contraction 
of the VL and BF for a routine cyclist in relation to the basic 
physical work capacity.  The synergy profiles when 
comparing the muscle synergy profiles for skiing, pedaling, 
and squatting were related to the agonist/antagonist 
contraction types. [18].  The results could be evidence of 
maturity, which refers to the reciprocal contraction during 
muscle fatigue along with several skill-related motions [23].  

Since the routine cycling participant had a strong pedaling 
force, the decrease in the ARV and hk of VL could be caused 
by the power assist system.  On the other hand, the decrease 
in the hk for BF and not for VL happened for the non-routine 
cycling participant.  The results could be related to the 
simultaneous pedaling torque required for sustaining the 
performance in each phase [19]. 

B. Design of Biosignal-based Measurement and Control 
The participants in our previous field experiment [24], 

included eight healthy young male volunteers (23.8 ± 2.3 yrs), 
five middle age-aged female volunteers (44.2 ± 6.3 yrs), and 
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Figure 4. Prediction of perceived muscle fatigue with ARV time-series; solid 
line and dot indicate estimated time-series and predicted ARV, respectively  

Figure 2.  hk at each muscle during cycling in the field  

Figure 1.  Synchronously averaged % RMS profiles in a late phase for VL 
and BF with (1:1) power assist-off (broken line) and –on (solid line) [11]. 

Figure 3.  Slope geography in the circuit 
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four elderly male volunteers (61.3 ± 8.1 yrs).  The muscle 
fatigue was assessed by focusing on the increase in ARV and 
decrease in MPF for a late segment [8], [11].  Moreover, the 
ARV profile for the crank angle was steady in the non-fatigue 
trial, while one for the elapsed time varied in a late phase.  
Thus, the muscle activity profiles in addition to the 
time-series of ensemble indices in a phase should be 
monitored.  In addition, the iEMG ratio, that is the ratio of 
iEMG in each phase divided by one in the early phase, 
significantly increased in the fatiguing trials for the BF and 
TA muscles.  Such variation was related to the individual 
fatigability, regardless of the age and gender of the related 
groups and torque profile for the EAB. We showed that at 
least five time-scales (stroke, segment, phase, section, and 
trial scales) were required to effectively customize the EAB 
for the fatigue assessment based on uphill road cycling using 
the SEMG related profiles, the %iEMG, and CC. 

C. Subjective muscle fatigue Supported by Objectively 
Measured Data during Cycling 
It should be noted that subjective data is also important 

for personally customizing a process because of the limitation 
of practically measured objective data.  The biosignal-based 
workload control system for personally customizing a 
process should be developed based on a balance between the 
objective and subjective data, such as the RPE [7, 25].  
Another choice for the perceived fatigue in relation to an 
objective physical index such as VO2max or the cadence could 
be considered as an alternative [17].  On time feedback from 
the objectively measured physiological activity could be 
effective for supporting the subjective perceived fatigue [3]. 

V. CONCLUSION 
We studied the effectiveness of subjectively presenting 

approaches that are based on the perceived fatigue prediction, 
using the idea of synergy and a multiple regression model 
for ubiquitously recognizing the status of functional 
activities instead of using objectively measured data, and 
proposed a power control system for electrically assisted 
bicycles (EABs). Synergy classified significantly changing 
muscles in relation to motion, that is, the muscles required 
for EAB cycling was found to be the VL and BF muscles, 
depending on a daily cycling routine or not.  Moreover, 
modeling subjectively perceived fatigue by using objectively 
measured biosignals with multiple regression and 
polynomial approximation could be a potential approach for 
developing a personally customized control system of EABs.  
Finally, the experimental results showed that muscle activity 
profiles clarified the effect of a power assist system and the 
ongoing perceived physical fatigue could be predicted based 
on the time-series of the index, such as the ARV of SEMG. 
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