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Abstract— Upper airway (UA) narrowing and collapse during
sleep results in obstructive sleep apnea (OSA). We hypothesize
that vibratory patterns of snoring can distinguish simple
snorers from those with OSA. Samples of breath sounds were
collected from 7 snorers without OSA and 5 with OSA. Snoring
pitch (F0) contours were found using the robust algorithm
for pitch tracking (RAPT). The OSA snoring contours showed
fluctuating patterns as compared to the smoother patterns of
simple snorers. This suggests that snoring reveals the under-
lying instabilities of UA tissue in OSA. Conditional random
fields, a statistical sequence classifier, gave 75% accuracy in
distinguishing the 2 groups.

I. INTRODUCTION

Obstructive Sleep apnea (OSA) is a common breathing

disorder affecting approximately 7% of the adult population

[1]. It is is characterized by repetitive partial (hypopnea)

or complete (apnea) cessation of breathing during sleep for

intervals of 10-90 seconds as a consequence of partial or

complete collapse of the upper airway (UA), respectively.

These events are accompanied by intermittent hypoxia and

are terminated by sudden arousals that cause sleep disruption.

They alternate with episodes of hyperventilation, during

which loud snoring occurs. As a consequence of intermittent

hypoxia and sleep disruption, patients suffer from daytime

sleepiness and impaired cognitive performance. Because of

these effects, patients with OSA are at higher risk for motor

vehicle accidents than subjects without OSA; e.g., in the US,

OSA-related motor-vehicle collisions are estimated to have

caused 1,400 deaths and $15.9 billion in associated costs

in one year [2]. Over time, OSA also increases the risk of

developing hypertension heart failure and stroke by 2 to 4

fold compared to subjects without OSA [3], [4]. OSA is

therefore a major public health problem whose diagnosis and

treatment could have a very substantial beneficial medical

and public health impact [5].

A. Pathophysiology of OSA

In patients with OSA, upper airway collapse is caused

by the normal attenuation of neural activation of UA dilator

muscles at the transition for wakefulness to sleep superim-

posed upon an anatomically narrowed UA [6]. Conditions
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that lead to upper airway narrowing and predisposition to

OSA include obesity, tonsillar enlargement, and retrognathia.

The predominant site of UA collapse during sleep in patients

with OSA resides within the pharynx between the posterior

aspect of the hard palate and the glottic inlet. This comprises

the naso-, retropalatal-, oro-, and hypo-pharynx [7]. Despite

UA obstruction and reduced or absent airflow, the respiratory

centre continues to generate respiratory drive.

B. Snoring as an Indicator of Upper Airway Dynamics

When narrowing of the UA takes occurs during sleep,

airflow induces vibration of the UA tissues resulting in the

snoring sounds [8]. Therefore, vibratory patterns of snoring

are expected to be influenced by the biomechanical properties

of the UA, such as the tissues laxity and UA narrowing.

Snoring that takes place in the absence of UA collapse might

thus be distinguishable from snoring that takes place during

more profound narrowing as in OSA. The goal of this study,

therefore, is to study and classify the vibratory features of

snoring from subjects with obstructive events and compare

them to snoring from subjects without OSA.

II. METHODS

A. Data Acquisition

We recruited patients who were referred to the Toronto

Rehabilitation Institute Sleep Research Laboratory with sus-

pected OSA for overnight polysomnography (PSG). Dur-

ing PSG, thoracoabdominal movements were measured by

respiratory inductance plethysmography, airflow by nasal

pressure cannulae, and arterial oxyhemoglobin saturation

(SaO2) by oximetry. Apneas were scored as a drop in sum of

thoracoabdominal movement from baseline by 90% lasting

10 seconds and hypopneas were defined as a 50% to 90%

reduction in thoracoabdominal sum lasting 10 seconds. An

OSA disorder was defined as an AHI ≥ 10. Snorers without

OSA were defined as subjects with an AHI <10.

Breath sounds were recorded simultaneously with PSG

using an electret microphone embedded in a face frame at

a sampling rate of 16 kHz as described in [9]. A group of

5 subjects with OSA (GOSA) and 7 simple snorers (GSN)

without OSA were included. Since breathing is absent during

apneas, snoring is also absent. Therefore, we examined

sound segments with hypopneas rather than apneas in GOSA,

where there is some ventilation and therefore where snoring

may be present. A research technician used PSG clinical

scoring results in order to locate portions of the night where

hypopneas took place in the GOSA. In the GSN , the technician

identified segments with snoring by listening. Subsequently,

3 to 5 segments from various part of the night were isolated
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from the breath sounds data of each subject. Each segment

(S) was 5-7 minutes long containing either predominantly

hypopneas or normal breathing with snoring.

B. Estimation of Snoring Pitch (F0)

Previously, autocorrelation-based methods have been used

to detect snoring based on its semi-periodic nature [10].

In this work we adopt an autocorrelation algorithm for

identifying snores given their fundamental frequency (F0),

which is determined by the robust algorithm for pitch

tracking (RAPT) [11]. RAPT employs the normalized cross-

correlation function (NCCF), which is similar to the auto-

correlation function, but has the advantage of eliminating

the dependence of the summation boundary on the lag index

and normalizes the sum by dividing it by the magnitudes

of the multiplied signals [11]. Subsequently, RAPT selects

a pitch candidate generated from the NCCF using dynamic

programming over all frames within the analysis window. By

choosing the minimum-cost path between the peaks of the

NCCF, analysis criteria can be defined based on the typical

properties of the signal, such as the suppression of large

jumps to harmonics of the true F0 [11].
The RAPT is applied to each segment (S) using the

parameters. RAPT is is set to detect F0 between 20-300

Hz of successive 50 ms windows, where each analysis

window is classified as being periodic, if contains a valid

F0, or aperiodic otherwise. Non-snoring breath sounds such

as normal inspirations and expiration are aperiodic sounds

that don’t have an F0 and thus will not be included in the

subsequent analysis. On the other hand, each snoring episode

with sound periodicity will yield a pitch contour sequence

(P). P sequences are subsequently isolated and fed into the

sequence classification algorithms in section II-C.

C. Pattern Classification of Pitch Contour Sequences

In order to test the differentiability of pitch contours

between snores associated with obstructive hypopneas and

snores not associated with hypopneas, two types of pattern

recognition techniques were tested: hidden Markov models

(HMMs), conditional random fields (CRFs), and hidden

conditional random field (HCRFs). HMMs and HCRFs are

sequences classifiers that model long-term changes in an

input signal by estimating the dynamics of hidden or unob-

served variables that conditions that signal. The advantage of

using them is that they model temporal variability without

explicitly quantifying the nature of that variability.

1) Hidden Markov models (HMMs): HMM’s categorize

observable temporal data sequences according to unobserved

discrete variables that have an underlying connected-state

structure. In this work we use continuous HMMs that observe

a univariate continuous space O where the likelihood of a

sequence of observations, o, given a current state qi ∈ Q is

Bi(o) =
M

∑
m=1

ωi,m
1

(2π)d/2|Σi,m|1/2

exp

[

−
1

2
(o−µi,m)⊤Σ−1

i,m(o−µi,m)

]

(1)

where d = 1 is the number of dimensions in the data, M is

the number of component Gaussians in each state, ωi,m is the

weight of the mth Gaussian in state qi (subject to ∑M
m=1 ω jm =

1, µi,m is its mean, Σi,m is its covariance, and |Σ| is the

determinant of Σ.

HMM parameters, Φ, consists of Bi(o), the state transition

matrix A(qi,q j) describing the a priori probability of transi-

tioning from state qi to q j and an initial state distribution

πi. Since states are unobserved, their values are inferred

during the automatic adjustment of these parameters using

the Baum-Welch algorithm. During testing, we do not use

the traditional Viterbi algorithm since we are not interested

in the state sequence; rather, we train one HMM for each

of our two classes (i.e., snoring without OSA and snoring

with OSA), and compare the likelihoods of test sequences

o in each of these models separately. These likelihoods are

performed with the Forward algorithm given the respective

parameterization Φ,

P(o;Φ) = ∑
∀q

P(q;Φ)P(o |q;Φ), (2)

which sums over all possible sequences of hidden states q.

2) Conditional random fields : The conditional random

field (CRF) and the hidden conditional random field (HCRF)

are also sequence classifiers but differ from the HMM in that

its estimation of the distribution of a class label l (i.e., normal

or apneic) given the observation data does not model the

observation prior P(o), as shown in Eq. 3. The CRF does

not model intrinsic sequential substructures using hidden

states as the HCRF does, but both assign labels to the entire

sequence [12].

In CRFs, the parameter set θ defines the weights (θk ∈ θ )

applied to feature functions fk of the graphical model, which

are analogous logarithms of the conditional state and obser-

vation probabilities in HMMs and are initialized randomly

[13]. In the HCRF, the likelihood of a particular label l of an

observation sequence o given some parameterization θ must

be computed over all possible sequences of hidden states

(where q is a particular state sequence), where each state qi

comes from the set Q of states. In other words,

P(l |o,θ) = ∑
q:qi∈Ql i

P(l |q,o,θ)P(q |o,θ) , (3)

where P(q |o,θ) is the standard conditional random field

formulation that defines state and transition functions [12],

[13], namely

P(q |o,θ) =
exp(∑k θkFk(q,o))

∑r exp(∑k θkFk(r,o))
, (4)

where Fk(q,o) is the sum over all state transition feature

functions applicable to q and observation feature functions

applicable to o.

Given a training set of labeled sequences (oi, l) where i =
1..N, we apply conjugate gradient ascent to find the optimal
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parameter values θ ∗ = argmaxθ L(θ) given the following

objective function:

L(θ) =
N

∑
i=1

logP(l |oi;θ)−
1

2σ2
||θ ||2, (5)

which is the log-likelihood of the parametrization given

by the conditional log-likelihood of each training sequence

logP(l |oi;θ) and the Gaussian prior likelihood of θ with

variance σ2. If the parameter space θ is uniformly dis-

tributed, as we assume here, σ2 approaches infinity and we

discount the second term.

D. Experiments

We perform a 5-fold cross validation of the given data.

In each fold, 80% of the P sequences are randomized for

training and 20% randomized for validation.

III. RESULTS

We isolated 18 segments with hypopneas and 21 segments

with simple snoring.

A. Qualitative Description of Snoring Pitch Contours

Pitch contours originating from snore episodes in the GSN

were found to be relatively flat over time with a minor drop

towards the end. In other words, each snoring episode had

relatively flat F0 course throughout the episode (bottom panel

of Fig. 1). On the other hand, most snoring pitch contours

originating from GOSA showed a fluctuating (i.e. ‘wavy’)

course over time. That is, F0 values oscillated over the course

of individual snores as illustrated in the examples in Fig. 1.

Fig. 1. Exemplary pitch (F0) contours originating from 3 breathing cycles
concatenated from a subject with OSA (above) and from a subject without
OSA (below). Individual segments of pitch contour are plotted against
frequency (Hz). Each of which originates from a single snore corresponding
to the sound waveform underneath. Obstructive snores show a wavy pattern
compared to the flatter pattern of simple snores.

B. Performance of Sequence Classifiers

The proportion (between 0 and 1) of successful clas-

sifications of previously unseen snores for each of the 5

folds across each of the parameterizations of the HMM,

CRF, and HCRF models are shown in Tables I and II. The

highest mean accuracy achieved by HMM was 55%. The

CRF model, however, had a mean accuracy of 75%. Clearly,

the conditional random field classifier outperforms the hidden

Markov model in this scenario, across all parameterizations,

with left-tailed heteroscedastic t(16.5776) = −23.15, p <
0.00001,CI = [−∞,−0.2247]. A two-way analysis of vari-

ance in the hidden Markov model results shows no significant

effect of the number of states (F(1,3) = 0.89, p = 0.4819)

or of the number of mixtures (F(1,3) = 1.04, p = 0.4215).

Similarly, a two-way analysis of variance in the hidden

CRF results shows no significant effect of the window size

(F(1,1) = 0.08, p = 0.7937) or of the number of states

(F(1,3) = 0.19, p = 0.898). That these models do not offer

significant variation based on their parameters indicates that

the superiority of the (H)CRF-type relative to the HMM is

based on the underlying modeling structure. Furthermore, it

suggests that more parsimonious parameters might be more

useful in practice, as their resulting computations are quicker.

IV. DISCUSSION

In this study, we have shown that intra-snore F0 values, or

pitch contours, follow different time courses in simple snor-

ers and in snorers with OSA and that their patterns could be

reliably classified using sequence classification algorithms,

with up to 75% accuracy using CRF. F0 represents the

speed at which UA tissue flaps collide resulting in the semi-

periodic snoring sounds. In this semi-periodic signal, each

cycle is a result of a single tissue collision i.e. 1 closure and

opening. Therefore, it stands to reason that the speed of tissue

collision will be influenced by the biomechanical properties

of the colliding tissue flaps of the UA. These properties

include flexibility of the UA tissues, the distance between

the vibrating flaps, and the amplitude of the driving force.

In this context, the driving force is the inspiratory airflow

created by the negative airway pressure during inspiration.

During inspiration, in which snoring takes place, the pressure

inside the lung drops and UA below atmospheric reaching

the minimum in the middle of inspiration (-1 mm Hg) and

back to atmospheric pressure at the end of inspiration.

In order to understand UA biomechanics, researchers

suggested that the human UA can be modelled as a Starling

resistor, which consists of a collapsible segment in the

pharynx surrounded by 2 solid segments; the nose from

above and glottis from below [14]. The collapsible segment

is the part that narrows and gets occluded in patients with

OSA due to attenuated neuromuscular tone and the negative

inspiratory pressure. In patients with OSA, it has been shown

that the UA requires less negative pressure to collapse than

in subjects who snore but don’t have OSA [14]. This means

that the UA of simple snorers, although partially narrowed,

is still more stable during sleep in the face of the inspiratory

negative pressure than in OSA. On the other hand, the UA

of an OSA patient is less stable and is prone to narrowing

and collapse under the same conditions. This could explain

the the noticeably wavy course of snoring pitch sequences

in the GOSA as compared with the more constant pitch

time sequence in the GSN . It can be postulated that with

the ensuing inspiration, the progressively negative airway
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TABLE I

RESULTS OF THE 5-FOLD CROSS VALIDATION OF HMM WITH MEAN AND VARIANCE ACROSS THE 5 FOLDS

Q=1 Q=2 Q=3 Q=4

M=1 M=2 M=3 M=4 M=1 M=2 M=3 M=4 M=1 M=2 M=3 M=4 M=1 M=2 M=3 M=4

Fold 1 0.567 0.453 0.579 0.476 0.499 0.312 0.375 0.499 0.481 0.642 0.484 0.539 0.444 0.527 0.559 0.650

Fold 2 0.352 0.387 0.424 0.433 0.553 0.375 0.542 0.693 0.413 0.450 0.372 0.496 0.636 0.470 0.453 0.441

Fold 3 0.453 0.579 0.648 0.582 0.527 0.479 0.536 0.550 0.410 0.605 0.487 0.395 0.539 0.527 0.467 0.610

Fold 4 0.321 0.352 0.453 0.513 0.456 0.544 0.639 0.593 0.662 0.519 0.570 0.567 0.556 0.539 0.507 0.447

Fold 5 0.355 0.513 0.453 0.427 0.490 0.458 0.470 0.441 0.427 0.473 0.424 0.499 0.513 0.424 0.395 0.610

mean 0.410 0.457 0.511 0.486 0.505 0.434 0.512 0.555 0.479 0.538 0.468 0.499 0.538 0.497 0.476 0.552

var 0.010 0.008 0.009 0.004 0.001 0.008 0.010 0.009 0.011 0.007 0.006 0.004 0.005 0.002 0.004 0.010

Q: the number of hidden states used; M: the number of Gaussians that are used to model the observation probabilities at each state

TABLE II

RESULTS OF THE 5-FOLD CROSS VALIDATION OF CRF AND HCRF WITH MEAN AND VARIANCE OF THE 5 FOLDS

CRF HCRF

W=3 W=5

W=3 W=5 Q=2 Q=3 Q=4 Q=5 Q=2 Q=3 Q=4 Q=5

Fold 1 0.75072 0.74785 0.74212 0.73639 0.73926 0.75072 0.74499 0.73926 0.73639 0.72493

Fold 2 0.72493 0.74785 0.75358 0.73926 0.73639 0.72206 0.73352 0.70774 0.7192 0.75645

Fold 3 0.75358 0.75645 0.77937 0.75931 0.75645 0.76791 0.75931 0.75358 0.76504 0.73066

Fold 4 0.80229 0.73066 0.73066 0.74499 0.70487 0.76218 0.73926 0.72493 0.73926 0.75645

Fold 5 0.72493 0.72779 0.70487 0.69628 0.67908 0.70487 0.71633 0.73066 0.71347 0.7192

mean 0.75129 0.74212 0.74212 0.735246 0.72321 0.741548 0.738682 0.731234 0.734672 0.737538

var 0.000999 0.000152 0.000759 0.000552 0.000955 0.000732 0.000248 0.000289 0.000409 0.000314

W = the window size, which consists of the number of adjacent samples used as an input vector to models e.g. W=5 means a subsequence of 5 measurements are
concatenated together as an input.

pressure acts on the pliable UA tissues of the OSA patients

causing narrowing of the UA and bringing the vibrating flaps

closer together. In turn, this modulates the speed of tissue

collision and eventually give rise to the wavy pitch contours

observed in OSA.

To our knowledge, this is the first study to implement

RAPT for snoring analysis. RAPT offers the ability to track

snoring signals in short windows, which provided excellent

time resolution of the pitch contours. Snoring pitch has been

examined earlier by Abeyratne et al [10] who found that

snores in OSA patients are characterized by intra-snore pitch

discontinuities and thus have higher pitch jump probability as

compared to simple snores [10]. Our results are in line with

that work in term of the instability of snoring pitch in patients

with OSA. However, our work extends that of Abeyratne et

al. [10] by deploying the CRF and HCRF sequence classi-

fication algorithms that characterize the relationship among

all pitch values in the entirety of each sequence, without the

need to explicitly identify the discriminatory feature(s). In

this study, the direction and depth of F0 fluctuations were

not determined, yet CRFs yielded 75% accuracy.

Future work will incorporate larger sample size, inde-

pendent measures for UA biomechanics, and alternative

classification schemes.
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