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Abstract— We present a novel algorithm for real-time de-

tection of the onset of surface electromyography signal in

step-tracking wrist movements. The method identifies abrupt

increase of the quasi-tension signal calculated from sEMG

resulting from the step-by-step recruitment of activated motor

units. We assessed the performance of our proposed algorithm

using both simulated and real sEMG signals, and compared

with two existing detection methods. Evaluation with simulated

sEMG showed that the detection accuracy of our method is

robust to different signal-to-noise ratios, and that it outperforms

the existing methods in terms of bias when the noise is large

(low SNR). Evaluation with real sEMG analysis also indicated

better detection performance compared to existing methods.

I. INTRODUCTION

S
URFACE electromyography signal, sEMG, can be used

for various applications, including diagnosis and evalu-

ation of patients with neurological diseases, studying motor

control, and serving as input signal for the control of robotic

devices. Detecting the onset of increased muscle activity is

required for interpreting temporal information such as the

beginning and duration of motion or cocontraction. Real-time

onset detection is particularly important if the signal is used

for controlling devices like prostheses [1] or for predictive

haptic displays [2] (as in the example depicted in Fig. 1).

Methods for onset detection in sEMG have been studied

intensively in the last decade [3]–[5]. Existing methods

can be categorized into two types: one type is threshold-

based where muscle activation onset is detected when the

sEMG signal exceeds critical threshold [6]. The other type

is based on a statistically optimal decision: it assumes

statistical properties of signals, estimates the parameters of

the assumed distributions, and detects onset when these

parameters change. The performance of existing methods has

been compared [3], [4], but the most appropriate method

have not been established because the performance is very

sensitive to noise in the signals.

During movement, muscles are recruited gradually, and the

temporal properties of this recruitment are expressed in the

sEMG signal [7]. Thus, sEMG under a specific movement

would reflect its temporal characteristics. Based on this
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Fig. 1. The initial state of step tracking movement, in which a user is
asked to move his hand from point-to-point, while holding haptic device

assumption, we propose a robust real-time sEMG onset

detection method by beginning-of-motion template matching.

II. ONSET DETECTION OF SEMG

A. Movement theory applied to sEMG quasi-tension

Step tracking movements in which a user is asked to move

his hand from point-to-point have been studied extensively,

and various computational models have been suggested to

describe their trajectories [8], [9], [11]. The Minimum Ac-

celeration with Constraints model [11] suggests that at the

beginning of movement, the third derivative of position,

jerk, changes abruptly from zero to some constant value,

resulting in a position trajectory that can be described as a

cubic power of time after onset. This model was used to

develop an algorithm for automatic, offline, movement onset

detection based on regression [10]. Here, we assume that

muscle tension, which can be represented as a convolution

of sEMG and impulse response of a single motor unit [12],

[13], increases similarly to displacement in the beginning of

motion [14]. Thus, tension y can be represented as:

y(t) =

{
0 t < t0
at3 t ≥ t0.

(1)

where a is a coefficient of cubic function, and tension y
increases abruptly at the onset of sEMG time t0.

B. Curve fitting for onset detection

To identify sEMG activity onset, we propose a method

based on fitting a piecewise linear regression around the

suspected onset time. Similarly to the offline algorithm in

[10], our method uses a template consisting of a flat region

before onset, and a cubic power of time after it. Fig. 2

illustrates the process of curve fitting. The method employs

a sliding test window, and finding the least square error

approximation of the quasi-tension profile with the template

curve. Increase in the size of the coefficient of the cubic

region indicates onset of muscle activation. Our method

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2056



Tension

Template curve

( <t< +W)

( -W<t< )

T3C

(a)

Threshold

t1 t2 t3 t4

t

Fig. 2. Onset detection by sliding template curve (upper right corner)
fitting to a window of quasi-tension signal (upper trace). The coefficient of
the cubic function segment (lower trace) increases at movement onset.

detects onset of sEMG activity when this coefficient exceeds

a threshold hT . Because our method uses the coefficient of

the regression between tension and a cubic function of time,

in the remainder of the paper we refer to it by the name T3C

algorithm.

The T3C algorithm for detecting the onset time of sEMG

activity, t0, can is as follows. First, a quasi-tension signal, yk
is calculated from the sEMG signal xk by convolution with

an impulse response wk of a single muscle unit recruitment,

i.e.:

yk =

M∑
i=1

wixk−i; wk =
k

Tc

e−
k

Tc (2)

where M is the number of samples for convolution, and Tc

is the time constant of the impulse response. TC was set to

be 50 [13], and M to be 300. Then, for a window of length

2WT the quasi-tension is fitted with a flat region of length

WT and a cubic function of time of length WT :

ȳk =
1

WT

k−WT∑
i=k−2WT+1

yi (3)

gk = min
a

WT∑
i=1

‖ yk−WT+i − ȳk − a(iΔT )3 ‖2, (4)

where ΔT is a sampling time. Finally, the onset is detected

when gk exceeds the threshold hT for the first time:

kd = min
k

{k ≥ 2WT : gk ≥ hT } (5)

and the estimated time of onset can be calculated as:

k̂0 = kd −WT + 1. (6)

The values of hT and WT were set empirically to be 0.5×105

N/s3 and 10, respectively. In future studies, we will explore

optimization of these parameters.

III. EVALUATION OF DETECTION

PERFORMANCE ON SIMULATED SEMG

A. Signal generation

As a first step for assessing of robustness and accuracy

of our proposed algorithm and comparing its performance

to other existing methods, we used simulated sEMG signals.

The main advantage of using simulated sEMG is that the

correct onset time is known. In addition, it allows for con-

trolling signal parameters like signal-to-noise ratios (SNR)

and rise time.

As in previous studies, we use a model that is based

on white noise, whose variance is modulated by muscle

activation [3], (Fig. 3). The signal has some quiet state

variance σ2
noise, and at movement onset the variance increases

gradually until reaching the active state variance σ2
noise +

σ2
signal. Thus, the variance of sEMG signal, σ2 can be written

as:

σ2(k) = σ2
noise + σ2

signalu(k, τ, k0), (7)

where u(k, k0) describes the dynamic profile of muscle

activation, characterized by the transition function r(k, τ, k0)
as:

u(k, τ, k0) =

⎧⎨
⎩

0 k < k0
r(k, τ, k0) k0 ≤ k < k0 + τ/ΔT
1 k ≥ k0 + τ/ΔT

(8)

where τ is the rise time.

Most studies assume a linear transition function during the

rise time [3]. However, nonlinear transition is physiologically

more plausible, because muscle units are recruited gradually

in accordance with the size principle, where smaller units are

recruited first [7]. We compare three transition types. One is

linear, following [3], and the other two are smooth nonlinear

transitions: one that is based on a function that models a

point-to-point movement that minimizes the jerk [8], and the

other is a sinusoid. These are formally described as:

1) Linear transition

r(k, τ, k0) = (k − k0)ΔT/τ (9)

2) Minimum-jerk transition

r(k, τ, k0) = 10((k − k0)ΔT/τ)3

− 15((k − k0)ΔT/τ)4 + 6((k − k0)ΔT/τ)5
(10)
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Fig. 3. Simulated EMG signals. Upper and middle panels depict example
of one signal with linear ramp modulation of white noise variance. Lower
panels depict three ramp functions used in this study: (left to right) linear,
minimum-jerk, and sinusoidal.
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3) Sinusoidal transition

r(k, τ, k0) = 0.5( sin(π(k − k0)ΔT/τ

+ π/2) + 1).
(11)

To normalize the signals, σsignal was always set to 1, while

σnoise was determined based on SNR, such that:

SNR = 10 · log10
σ2

signal

σ2
noise

[dB]. (12)

B. Procedures

We generated simulated sEMG signals with varying rise

times τ distributed uniformly between 5 and 30 ms, and

varying SNR distributed uniformly between 4 and 12 dB.

To assess the dependency of accuracy on SNR, we fixed the

rise time at τ = 20 ms, and the analysis of dependency

on rise time was performed with fixed SNR of 6 dB. We

repeated the simulation 100 times for each condition, and

then examined the distributions of detected onset errors.

Because an accurate detection algorithm needs to be unbiased

and precise, we examined the central tendency as well as

the dispersion of error distribution. Because the distributions

were not symmetrical, we chose the median and interquartile

range (the difference between the first, 25%, and third, 75%

quartiles of the ordered errors) as the statistics of interest for

comparison between different detection algorithms.

We compared the performance of our method with two

additional methods: mean tension Change Ratio [3] and

variability threshold Hodges method [6]. The Change Ratio

method detects onset time when a sufficiently large change of

mean tension occurs. Namely, after calculating the tension

signal from (2) the ratio of mean tension before and after

suspected onset time is calculated,

ȳk =
1

WC

k−WC∑
i=k−2WC+1

yi, z̄k =
1

WC

k∑
i=k−WC+1

yi (13)

gk = z̄k/ȳk, (14)

and the onset is detected when gk exceeds the threshold hT :

kd = min
k

{k ≥ 2WC : gk ≥ hC} (15)

and the estimated time of onset can be calculated as:

k̂0 = kd −WC + 1, (16)

where hC and WC were set to 5 and 10, respectively.

The Hodges method detects onset time based on a change

of the mean value of rectified and filtered sEMG signal, yk,

that exceeds a threshold that depends on the initial standard

deviation of yk [6]. Namely, the mean, μ̂0, and standard

deviation, σ̂0, of the first M samples of yk are calculated,

and a test function is calculated according to:

gk =
1

σ̂0

(ȳk − μ̂0), ȳk =
1

2WH

k∑
i=k−2WH+1

yi. (17)

The onset is detected when gk exceeds a threshold,

kd = min
k

{k ≥ 2WH +M : gk ≥ hH} . (18)

and the estimated time of onset can be calculated as:

k̂0 = kd −WH + 1 (19)

We set WH to 10, similarly to the other methods, and

followed [3], set hH to 2.5, and used a 6th-order Butterworth

low pass filter with 50 Hz cutoff frequency to calculate yk.

C. Results

Fig. 7 (a) shows the cumulative distribution function

(CDF) of the onset detection error, defined as Pa = P (|k̂0−
k0| ≤ a), where k̂0 and k0 are the detected and real onset

time, respectively. This distribution function was calculated

based on 1,000 sEMG simulations with sinusoidal transition,

SNR = 6dB and τ = 20ms. The CDF of the T3C method is

leftmost, indicating superior detection performance.

Fig. 4 shows evaluation of the onset error as a function of

SNR. The median of the T3C method was smaller than the

other methods at small SNR (i.e. large noise), indicating that

our method is robust to noise, while the interquartile range

was similar among the methods. Fig. 5 shows evaluation of

the onset error as a function of rise time, and reveals that

the T3C method has the smallest median. The median of

detected onset value in all methods increases with increasing

rise time, while the interquartile range remains roughly the

same. Short rise time in a simulated sEMG signal represents

fast activation of motor units due to fast movement, and

therefore, onset must be detected promptly to allow fast

response. Therefore, the fact that the onset is detected earlier

at small values of rise time indicates that all the methods are

effective in detecting the onset of rapid movements.
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Fig. 4. Performance evaluation based on simulated sEMG: (a) median and
(b) interquartile range of the onset error as a function of SNR with fixed
rise time at 20 ms

IV. EVALUATION OF DETECTION

PERFORMANCE ON REAL SEMG

A. Data acquisition

The system consists of an amplifier with electrodes

(BA1104-CM, TEAC), A/D converter (AIO-163202FX-

USB, Contec) to measure sEMG of ulnar flexor muscle
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Fig. 5. Performance evaluation based on simulated sEMG: (a) median and
(b) interquartile range of the onset error as a function of rise time with fixed
SNR at 6 dB

at 1 KHz, 3D position input device (PHANToM Omni,

SensAble), and a computer with a visual display.

B. Procedures

We recorded sEMG of superficial flexor muscle of fingers

and ulnar flexor muscle of right arm as representative mus-

cles that are activated during palmer flexion, with consider-

ation of the order of contribution of muscles to flexion. The

sEMG was recorded while the participant was performing a

wrist step-tracking movement while holding a haptic device,

as depicted in Fig. 1. In each movement, a round origin and

target were displayed, and the participant was asked to reach

the target and return to the origin as quickly as possible. To

allow sufficient sample size for evaluation of onset detection

performance, the participant performed 500 step-tracking

movements. Then, we applied all three algorithms to detect

sEMG activation onset and compared it to the correct onset

time that was determined by visual inspection.

C. Results

An example of one measured signal is depicted in Fig. 6.

Fig. 7 (b) depicts the CDF of the onset detection error.

Consistent with simulated sEMG evaluation, the CDF of

our the T3C method is leftmost, indicating overall superior

detection performance.
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Fig. 6. An example of signals generated during one forth-and-back wrist
movement: a sEMG signal (A), and its corresponding movement trajectory
(B). Visually inspected onset times of sEMG and position are included.
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Fig. 7. CDF of the onset error in case of (a) simulated sEMG with τ = 20

ms and SNR = 6 dB, (b) real sEMG signals

V. CONCLUSIONS

We propose a novel, movement-similarity based, method

for real-time onset detection in sEMG. We evaluated the

performance of this method in comparison with two existing

methods using both simulated and real sEMG signals. Simu-

lated sEMG evaluation revealed that our method is robust to

noise, and in low SNR, its performance is superior in terms of

bias. Real sEMG recordings evaluation, based on comparison

to visual offline detection, also supports the conclusion that

our proposed method is more accurate in onset detection than

other methods.
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