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Abstract — In this paper, an audio-based system for severity 

estimation of obstructive sleep apnea (OSA) is proposed. The 

system estimates the apnea-hypopnea index (AHI), which is the 

average number of apneic events per hour of sleep. This system 

is based on a Gaussian mixture regression algorithm that was 

trained and validated on full-night audio recordings. Feature 

selection process using a genetic algorithm was applied to select 

the best features extracted from time and spectra domains.  

A total of 155 subjects, referred to in-laboratory 

polysomnography (PSG) study, were recruited. Using the 

PSG's AHI score as a gold-standard, the performances of the 

proposed system were evaluated using a Pearson correlation, 

AHI error, and diagnostic agreement methods. Correlation of 

R=0.89, AHI error of 7.35 events/hr, and diagnostic agreement 

of 77.3% were achieved, showing encouraging performances 

and a reliable non-contact alternative method for OSA severity 

estimation. 
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I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a chronic disorder 
affecting 2% to 7% of adults and can lead to significant 
consequences, such as cardiovascular morbidity [1, 2]. OSA 
involves partial or complete collapse of the upper airway 
during sleep, often causing noisy breathing. The gold 
standard for OSA diagnosis is polysomnography study [3, 4]. 
The commonly used score to determine OSA severity is the 
apnea-hypopnea-index (AHI), which is calculated as the 
average number of apnea and hypopnea events per hour.  

Snoring is the most common symptom of OSA, occurring 
in 70% to 95% of OSA patients [5]. Little is known about 
acoustic characteristics of snoring events in adults. Earlier 
studies investigated snoring sound intensity [6, 7], spectral [7, 
8], and pitch-related [9, 10] features. Azarbarzin et al. [11] 
and Ben-Israel et al. [12] proposed methods involving 
analysis of sequential properties of snore variations during 
sleep time; this kind of analysis revealed that OSA patients 
have greater variances of snore properties. Maimon et al. [13] 
showed a positive correlation of R=0.66 between AHI and 
snore intensity through the night in a study conducted on 
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1643 subjects. It is possible that snoring signals carry 
essential information able to discriminate between patients of 
different degrees of OSA severity. However, the majority of 
previous literature has not attempted to estimate the AHI. 

In this study, we developed and validated a snore analysis 
algorithm enabling estimation of apnea hypopnea index 
(AHIEST) based solely on full-night audio signals acquired by 
a non-contact microphone. Moreover, we explored thousands 
of features corresponding to time and spectra domains, and 
meticulously selected an optimal set of features by feature 
selection algorithm. The AHIEST in this case was estimated 
using a Gaussian mixture regression (GMR) model. Using 
the PSG's AHI score as a gold-standard (AHIPSG), the 
performances of the proposed system were evaluated using 
Pearson correlation, AHI error, and diagnostic agreement 
methods.  

II. METHODS 

The OSA severity estimation system consists of two 
major phases – design phase for system training, and 
validation phase for system evaluation. The top-level design 
of this system is shown in Fig. 1. Our previously published 
snore detector [14] and sleep/wake detector [15] were used as 
the first steps of each phase. Once the snores are detected, an 
analysis of all snore events across the night is performed; 
various acoustic features are extracted and investigated. The 
OSA severity estimation (AHIEST) is performed according to 
a fitting (regression) model – GMR. 

 
 

Figure 1.  Block diagram of the audio-based OSA severity estimation 

system. 

A. Experimental setup 

One-hundred-fifty-five adult patients (subjects) who were 
referred to the sleep lab participated in this study. The 
subjects underwent PSG test and, simultaneously, the whole-
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night audio signal was recorded using a digital audio recorder 
(sampling frequency of 16kHz, 16 bits per sample). The 
audio acquisition was performed using a non-contact 
microphone (Rode, NTG-1) that was connected to a digital 
audio recording device (Edirol, R4-pro) and placed 1m above 
the patient's bed. After PSG, a sleep expert scans the PSG 
signals and marks suspicious breathing obstructions as apnea 
and hypopnea events.  

The OSA severity score, also known as AHI, can vary 
from expert to expert since human errors can occur. To get a 
more accurate and true result in this study, another sleep 
expert double checked the entire sleep time of the tested 
patient for errors. The Institutional Review Committee of the 
Soroka Medical Center approved the study protocol number 
10141. Subjects' characteristics are presented in Table I. 

TABLE I.  SUBJECTS' CHARACTERISTICS 

 

System 

Design 

(n=80) 

System 

Validation 

(n=75) 

P value 
 

Gender(M/F) 48/32 47/28 0.7334 

Age (yr)  55.3 ± 14.8 55.4 ± 15.2 
0.9670 

(range) (23-82) (24-81) 

AHI (events/hr)  22.2 ± 18.2 22.5 ± 18.5 
0.9191 

(Range) (1.0-82.2) (0.5-87.4) 

BMI (kg/m
2
)  32.0 ± 6.1 32.2 ± 6.1 

0.8386 
(range) (16.8-39) (17.2-38.6) 

ESS (score) 10.9±6.1 11.0±6.2 0.9195 

Recorded length (min)   444.2 ± 64.2 452.3 ± 65.7 0.4389 

Snores detected (#) 2775±1470 2821±1543 0.8495 

The values are presented as mean ± SD corresponding to the relevant 
units. The p value is determined using unpaired t-test or $2. 

In this case, the separation between the two groups 
(design and validation) was done randomly by maximizing 
the Bonferroni corrected p value when comparing the four 
parameters (AHI, BMI, Age, and Gender) in mean and 
standard deviation. No significant differences were found 
between system design (N = 80, m/f 48/32) and validation  
(N = 75, m/f 47/28) groups in age, BMI, snoring, ESS, AHI, 
associated morbidities, or tobacco smoking (Table I). 

B. Snore detector 

In this study we used our proposed snore detector [14]. 
The detector is based on signal enhancement and Gaussian 
mixture model fed by features extracted from time, energy, 
and spectra domains. The overall accuracy detection of our 
proposed system is > 97%. 

C. Sleep/Wake detector 

An additional module used in this study is the sleep 
quality estimation system [15]; this system automatically 
detects sleep/wake epochs from audio signal and calculates 
sleep quality parameters such as total sleep time. The overall 
accuracy detection of our proposed system for sleep/wake 
decision is about 82%. The total sleep time will help in 
normalizing some audio features that will be extracted later. 

D. Feature extraction  

One of the main challenges is to find how OSA severity is 
expressed through the snore characteristics. In order to do so, 
we would like to find appropriate features that represent the 
snore characteristics of a subject. 

We extracted 127 snore features that have the potential to 
distinguish between healthy and OSA subjects, and hence 
may reflect OSA severity. Those features can be divided into 
two major feature categories corresponding to the time and 
spectra domains. Those feature categories are presented in 
Table II. 

TABLE II.  FEATURE CATEGORY 

Feature category 
Features 

Counts 

I. Time related features 25 

a) Periodicity features (Inter-events) 10 

b) Duration and sample scattering (Intra-events) 4 

c) Energy features (Intra-events) 11 

II. Spectral related features  102 

a) Spectral parameterization (Intra-events) 68 

b) Bio-characteristic frequencies (Intra-events) 10 

c) Dynamic frequencies features (Intra-events) 24 
 

In order to estimate OSA severity from these snore 
features, a whole-night analysis is needed, therefore statistical 
distribution parameters such as moments (mean, variance, 
skewness, and kurtosis) and other parameters (min, max, 
median, and mode) were calculated from some of the features 
(Figure 2).  

 

Figure 2.  Visualization of eight parameters that were used to determine 

score distributions. 

These statistical parameters were calculated from three 
types of time-windows: whole-night and two running 
windows (fixed-length window, and a group of snores 
window). In this way the number of features was increased. 

1) Whole night snore distribution 

Here we seek a parameterization for the distribution of 
each single snore feature (Fig. 2) among the entire signal – all 
detected snores. We also included multiplication or division 
of several feature pairs. The most intuitive example of that 
kind of combination is the “number of apneas” (counting 
silence segments within snore groups) divided by “total sleep 
time” (extracted using the sleep/wake detector). 

2) Running windows 

Here, we investigated the variability of a feature along 
time. For this purpose we divided the entire night into 
consecutive windows: either fixed length (1 minute) or group 
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of snores (separated by >1 min of silence). From each 
window that surpasses minimum snore counts, the statistical 
parameters were extracted. The next step is to apply the same 
parameterization technique among all the windows for every 
parameter. 

Eventually, 2673 features were calculated using this 
parameterization technique of the different feature 
categorizations (Table II). Each feature was transformed into 
a linear scale, which is more appropriate for estimating AHI. 
This feature transformation was performed using a parabolic 
function (curve fitting) in the form of: 

 
2

x ax bx c � ��  (1)  

where x  represents the feature value before the 

transformation, and x�  represents the transformed feature;  

a, b, and c represent the parabolic coefficients. Using this 
transformation, the feature scatter becomes more linear and 
can be modeled using relatively few regression parameters. 
An illustration of the parabolic transformation is shown in 
Fig. 3. 

 
Figure 3.  The left panel illustrates a feature's values distribution 

according to true AHI score. The right panel represents the corresponding 

values after the parabolic transformation. Note how the transformation 

improved the correlation to the true AHI and can be easily fitted using 

fewer Gaussians that are needed for the GMR. 

E. Feature selection  

Now, we have too many features – we cannot use all of 
them to estimate AHI; this is a classic case for using a feature 
selection process to reduce feature dimensionality, keeping 
only the most powerful OSA severity related features and 
avoiding over-fitting. 

We used a Genetic algorithm [16] as a feature selection 
procedure. The criterion for feature selection was the AHI 
estimation error; this error was calculated as the mean 
absolute difference between AHIEST and AHIPSG. The AHIEST 
was calculated using the GMR (see section F.) 

F. AHI estimation using a regression model 

In this study we used 2nd order GMR as a regression 
model to estimate the AHIEST. The key idea of GMR is to 
construct a mixture of Gaussians for the joint density of the 
data (x ,y) [17]; In our case, x represents a feature vector 
(after feature selection), and y represents the suitable AHIPSG. 
In the design phase, after Gaussian mixture model training, 
GMR parameters were estimated for each Gaussian  

(k = 1,…,K): mean vectors –
 

k

x
� ,

 
k

y
� , covariance matrices – 

k

xx
� , 

k

yx
� , and the mixing weights, wk [17]. In the validation 

phase, AHIEST was calculated using the following equations: 

1

( ) ( ) ( )
K

EST k k

k

AHI w m
 

 �¦x x x        (2) 

where x represents the new (tested) feature vector, and mk(x) 
represents the regression of the kth Gaussian: 

1( ) ( ) ( )k k k k

k y yx xx xm � � �x � � � x �           (3) 

Note that in case of one Gaussian (K=1, w1=1), eq. (3) is 
equal to a simple linear regression.  

GMR is a complex classifier that can easily be affected by 
model over-fitting due to the numerous free variables such as 
mean vector and covariance matrix for each Gaussian. Since 
we performed feature transformation (see above), the 
complexity was reduced significantly. 

III. RESULTS 

One-hundred and fifty-five patients participated in the 
design and validation of this system (80 – design, 75 – 
validation). Table I summarizes the database used for the 
OSA recognition model. 

Feature selection – Based on the outcome of the snore 
detector and the sleep/wake detector, features were extracted. 
Three features were automatically selected to estimate AHI 
(using the feature selection process described in section II.E): 
1) The number of estimated apneas/total sleep time,  
2) Inter-snore homogeneity:  

� �� �� �var var n
j i n

Snore homogeneity Skew E         (4) 

where En represents the energy signal at frame index n,  
of snore index i within the j

th snore group.  
3) The radius of the 3

rd
 formant � energy ratio. The energy 

ratio calculation: 

10

1

10

1

f

i

Fr
T nn

Fr
T nn

E
Energy ratio

E

� 

� 

 
¦

¦
     (5) 

where Ti and Tf represent the initial and the final frame index 
of the tested snore respectively, and Fr is the frame rate (Fr = 
0.015sec). In case of apnea event, this energy ratio produces 
extreme values (very small or very large). As mentioned, 
each feature value underwent a parabolic transformation in 
order to reduce the complexity of the GMR. 

AHI estimation – AHIEST was estimated by a GMR model, 
fed by the three features as independent variables. In order to 
avoid over-fitting, the GMR model included only two 
Gaussians. Figure 4 presents a scatter plot of AHI determined 
by PSG (AHIPSG) versus estimated AHI (AHIEST).  
For the design dataset, the correlation coefficient was 
R=0.875 (p < 0.001) and average absolute AHI error was 
7.15 events/hr; the diagnostic agreement in that case was 
81.25%. Using the same parameters of the GMR for the 
validation dataset, the correlation coefficient was  
R=0.892 (p < 0.001) and AHI error was 7.35 events/hr.  
The diagnostic agreement in that case was 77.33%.  
Examining the Bland-Altman plots (Fig. 5) comparing 
AHIPSG versus AHIEST showed no consistent bias, i.e., the 
mean difference was only 0.5 events/hr for system design and 
validation. The plots also show that the AHIEST corresponded 
more closely to AHIPSG when the mean AHI was <15 
events/h in the validation study. 

AHI 

Tä 

AHI 

x 
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Figure 4.  Regression performance of the proposed AHI estimation. 

 
Figure 5.  Bland-Altman plot of the estimated AHI derived from the 

design database (top panel) and from validation database (bottom panel). 

Lines indicate the average difference and the 2 standard deviations. 

IV. DISCUSSION AND CONCLUSION 

In this study, we explored OSA severity assessment via 
regression model; a huge pool (> 2600) of audio features was 
used, containing complementary domains such as time and 
spectra. Each feature underwent a parameterization process in 
order to assess its distribution function, and a parabolic 
transformation was used in order to help the regression step. 
Three features were selected from this feature pool using a 
feature selection technique. 

Note that the three selected features are a combination 

of the time and spectra domains. The first selected feature 

extracts the apnea events in the audio signal and calculates 

the average number of apneas per hour – which is actually 

the definition of AHI. The sleep/wake detector [15] was an 

essential pre-step for this feature calculation and for some 

others. The second selected feature calculates the variance of 

the snores skewness based on the energy signal – which is a 

measure for inter-snore homogeneity – strengthening the 

theory that OSA snorers tend to have a greater variance of 

snores. The third selected feature can be seen as another 

version of apnea tracking using short-time energy ratio 

combined with some intra-snore spectral information. 

Snores were detected from all the subjects (Table I). 
Generally, when the number of detected snores is higher, the 

estimated AHI is more accurate. 

In comparison with earlier studies that estimate AHI 

using audio signals, our proposed method (R=0.892) is 

superior to others (R=0.842 in [12], R=0.66 in [13]). 

In summary, a new method of estimating OSA severity 
was proposed and validated using 155 subjects (80 – design, 
75 – validation). The method estimates AHI using GMR. Our 
results indicate that a diagnosis of OSA can be performed via 
a non-invasive, convenient, and inexpensive screening tool. 
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