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Abstract— Cardiac interference can alter the results of 

quantitative electroencephalograms (qEEG) used for 

medical diagnoses. The methods currently employed for 

the automated removal of cardiac interference, which 

rely solely on the electroencephalogram (EEG), are sus-

ceptible to non-cardiac interference commonly encoun-

tered in EEGs. Methods that rely on the electrocardio-

gram (ECG) – besides being unreliable when non-cardiac 

artifacts corrupt the ECG – either assume periodicity of 

the cardiac (QRS) peaks or alter uncorrupted EEG seg-

ments. This paper proposes a robust method for the au-

tomated removal of cardiac interference from EEGs by 

identifying QRS peaks in the ECG without assuming 

periodicity. Artificial signals consisting only of QRS 

peaks and the zero-lines in between are computed. Line-

ar regression of the EEG channels on the “QRS signals” 

removes cardiac interference without altering uncor-

rupted EEG segments. The QRS-based regression meth-

od was tested on 30 multi-channel EEGs exhibiting car-

diac interference of elderly subjects (15 male, 15 female). 

Achieving a correction rate of 80%, the QRS-based re-

gression method has proved effective in removing cardiac 

interference from the EEG even in presence of additional non-

cardiac interference in the EEG. 

I. INTRODUCTION 

Quantitative electroencephalogram (qEEG) measures are 
relevant for medical diagnoses both in neurology and psychi-
atry [1]. Interfering signals of technical or physiological 
origin can corrupt the qEEG results. Technical interference 
is produced by poor electrode contact, induction from the 
mains supply, or electromagnetic fields; physiological inter-
ference results from eye movement, muscle contraction, 
talking, or cardiac electrical fields caused by the heart beat 
[2]. Cardiac interference – even below the line of visibility – 
has been shown to markedly diminish the quality of qEEG 
measures [3]. 

There are a number of issues with the methods for auto-
mated removal of cardiac interference from EEGs proposed 
by scientific literature: methods that rely solely on the EEG 
are prone to non-cardiac interference occurring in the EEG 
[4-12]. In most clinical scenarios, an electrocardiogram 
(ECG) channel is recorded simultaneously. Methods relying 
on the ECG for interference detection [13-17] either assume 
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periodicity of cardiac peaks (known as QRS complexes), or 
include irrelevant P or T waves in the removal procedure, 
altering uncorrupted EEG parts in the process. Besides, the 
methods described in literature are unreliable whenever the 
ECG is subject to non-cardiac artifact.  

This paper describes a robust method for the automated 
removal of cardiac interference from the EEG using a simul-
taneously recorded ECG. Our algorithm is based on a modi-
fied QRS complex detection method that identifies and clas-
sifies the characteristic peaks in the ECG. Accurate correc-
tion is achieved by using real QRS complexes. By placing a 
zero-line in between the QRS complexes, the interference is 
removed without altering the rest of the EEG. This QRS-
based regression method does not require periodicity of the 
cardiac peaks, nor is it susceptible to failure in the presence 
of non-cardiac artifact in the ECG.  

This paper is structured as follows: Section II describes 
the sample data used for developing and testing, the underly-
ing assumptions, the algorithm, and the evaluation proce-
dure. Section III compares the performance of the algorithm 
with that of an alternative method. Finally, Section IV pro-
vides a conclusion and discusses the findings. 

II. MATERIALS AND METHODS 

A. Sample Data 

To develop the QRS-based regression method, EEG re-
cordings from the databases of the Medical Universities of 
Graz, Innsbruck and Vienna were used. The sample consist-
ed of EEG resting-state eyes-closed segments and simultane-
ously recorded ECG channels from 30 elderly subjects (aged 
between 57 and 87 years, 15 male and 15 female). Using 
alpha trace EEG, the data were recorded on 19 channels 
according to the international 10/20 system with sampling 
rate 256 Hz, connected mastoids as reference, ground elec-
trode between Fz and Cz, and impedances < 10 kΩ. Each 
EEG segment was corrupted by cardiac interference of vari-
ous degrees; the presence of interference was confirmed both 
by visual inspection, and by an automated cardiac interfer-
ence detection algorithm ensuring the detection of cardiac 
interference both above and below the line of visibility [3]. 

B. Assumptions 

The QRS-based regression algorithm was developed 
based on the following assumptions: 

1) The interference peaks in the EEG signals and the QRS 
complexes in the ECG signal are synchronized temporally 
and have – up to a scaling constant – the same shape. Other 
cardiac waves, e.g. P and T waves, do not corrupt the EEG. 
2) QRS complexes do not necessarily occur periodically 
3) The median heart rate is < 180 beats per minute (bpm). 
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4) QRS complexes resemble each other in appearance and 
duration, but their shape is not identical. 
5) The ECG signal is likely to be corrupted by both high and 
low frequency interference from unknown sources. 

No assumption of Gaussianity is required, neither for the 
EEG signals nor for the ECG signal. 

C. Generating QRS Signals 

First, subsidiary signals are generated which consist of 
estimated interference peaks and a zero-line in between. 
Under assumption 1 (see Section II B), the peaks are esti-
mated by the QRS complexes in the ECG. The algorithm for 
detecting the QRS complexes is derived from a modified 
Pan-Tompkins algorithm [18]. After applying a number of 
filtering operations to the ECG, the QRS complexes are 
identified by using a set of thresholds for the heart rate and 
the peak shape. In the original algorithm, a dual-threshold 
technique is used that can only be applied in the case of a 
regular heart rate [18]; the QRS-based regression method 
was designed to be robust against irregular heart rates.  

Once the QRS complexes have been located, they are 
classified either as possible or probable. Probable peaks are 
those that resemble each other in shape and periodicity, 
whereas possible peaks are those occurring non-periodically 
and/or with different shape. A possible peak may also be a 
spike-formed interference in the ECG channel. Two artificial 
signals are generated each consisting of QRS complexes and 
a zero-line in between. By using a probable and a possible 
QRS signal for removing cardiac interference from the EEG, 
the robustness of the method is enhanced in the presence of 
non-cardiac interference in the ECG. 

Fig. 1 illustrates the procedure by a 5-second ECG sam-
ple, each window describing one step. The ECG signal – 
centered and scaled to have variance 1 – is shown in Fig. 1a. 
Seven non-periodic QRS peaks can be identified and non-
cardiac interference sets in after the fourth peak. 

To reduce noise, the first step is to apply a low pass filter 
to the signal. At sampling rate 256 Hz, the cutoff frequency 
of the filter is about 14 Hz. Fig. 1b shows the ECG signal 
after low pass filtering. 

The second step is filtering the signal using a high pass 
filter. This reduces low frequency interference, including 
baseline trends. At sampling rate 256 Hz, the filter approxi-
mately corresponds to a cutoff frequency 5 Hz. Fig. 1c shows 
the effect of this high pass filtering – a reduction of low 
frequency noise. 

In the third step, a five-point derivative filter is applied in 
order to enhance the information about the QRS slopes. Fig. 
1d illustrates the effect of the derivative filtering. 

In order to amplify the effect of derivative filtering, the 
resulting signal is squared in step four (see Fig. 1e). 

In the fifth step, a moving average (MA) filter for ampli-
fication of the QRS shape is applied. The length of this filter 
is set to 38 sampling points corresponding to about 150 ms. 
Filtering produces a flat signal with trapezoids appearing 
where QRS complexes are likely to occur. The leftmost 
starting point of each trapezoid pinpoints the location of a Q  

 

 
peak, the first maximum on top of each trapezoid pinpoints 
the location of an S peak, and the slope in-between qualifies 
for the location of an R peak. The solid line in Fig. 1f shows 
the signal after MA filtering. For a more detailed description 
of steps 1 through 5, the reader is referred to [18].  

a) ECG signal (centered and scaled) 

 
b) Signal after low pass filtering 

 
c) Signal after high pass filtering 

 
d) Signal after derivative filtering 

 
e) Signal after squaring 

 
f) Signal after MA filtering with T1 & T2 

 
g) Identification of possible and probable QRS 

 
h) Possible and probable QRS complexes 

 
i) QRS signals 

 
Figure 1.  Illustration of processing steps for generating QRS signals. 
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To determine the time of the R peaks, the sixth step is to 
apply a set of thresholds other than those used in the dual-
threshold technique suggested in [18]. Figures 1f to 1h illus-
trate the new thresholding procedure. The first threshold, T1, 
is used for the magnitude of the MA signal. The time inter-
vals at which the MA signal exceeds T1 qualify for being the 
location of the R peaks. In these time intervals, the maxima 
of the (absolute) original ECG signal are determined. The 
times at which these maxima occur are the estimated points 
in time of the R peaks. The corresponding points in time of 
the Q and S peaks are then estimated by the points in time of 
the starting points and the maxima of the trapezoid in the 
MA signal. In Fig. 1f, the dashed horizontal line represents 
T1. The initial value for T1 was empirically determined as 
5% below the mean of the MA signal: 
 T1 := 0.95 mean(MASig) 

The median heart rate is estimated based on the median 
interval between estimated R peaks (medRR). As long as the 
median heart rate is >180 BPM, T1 is increased by 5%. 
Owing to its robustness, the median is used instead of the 
arithmetic mean. 

The second threshold, T2, defines the minimum accepta-
ble R-R span. Any R peak that follows the previous R peak 
within a time span of 200ms is rejected. Any R peak that 
follows the previous R peak after 200ms to 3/5 medRR is 
classified as possible R peak, and any R peak with a time 
span > 3/5 medRR is classified as probable R peak. At sec-
ond 3 in Fig. 1f, a signal segment is shown with R-R span < 
3/5 medRR. T2 is initialized as follows: 

 T2poss := 200 ms 
 T2prob := 3/5 medRR 

Finally, the third threshold, T3, defines the acceptable 
height of the remaining possible and probable QRS com-
plexes. The height of a QRS complex is defined as the abso-
lute amplitude difference between R peak and Q peak. The 
height range is defined based on the medium height of esti-
mated QRS complexes (medH). QRS complexes with a 
height between 0.65 medH and 1.35 medH are classified as 
possible QRS complexes, and those with a height between 
0.80 medH and 1.20 medH are classified as probable QRS 
complexes (if T2 has qualified them as probable, too).  

 T3poss := [0.65 medH, 1.35 medH] 
 T3prob := [0.80 medH, 1.20 medH] 

The height of the fifth QRS complex in Fig. 1h (second 
3.3) lies in the range of T3poss; all other QRS complexes are 
classified as probable. 

After identifying the possible and probable QRS com-
plexes, two QRS signals are generated consisting only of 
these complexes and zero lines in-between. Fig. 1i shows the 
two resulting QRS signals; all QRS complexes from the 
original signal are identified and no other interference – such 
as the low frequency artifact in Fig. 1a – is included. 

D. Two-Step Linear Regression 

Under assumption 1 (synchronized cardiac interference 
in the EEG and QRS complexes in the ECG), the cardiac 
interference is corrected by performing a two-step linear 
regression [19] of each EEG channel on the two QRS sig-

nals. This method enhances robustness in presence of inter-
ference in the ECG as different regression coefficients for 
the probable and possible QRS signals are used. Fig. 2 illus-
trates the cardiac interference removal: Fig. 2a shows a 2-
second segment of an EEG channel (Channel Pz) corrupted 
by three cardiac peaks. Regression of the EEG signal on the 
QRS signals produced the signal in Fig. 2e. The peaks were 
corrected without altering the rest of the EEG. 

 

E. Evaluating Performance 

The performance of the QRS-based regression method 
was evaluated in two ways. The accuracy of the QRS detec-
tion (see Section II.C) was tested on the sample data. For this 
purpose, the QRS complexes in the 30 ECG channels were 
visually identified and tagged. In this way, the sensitivity and 
specificity of the peak finding algorithm was evaluated.  

To evaluate the effectiveness of the QRS-based regres-
sion in removing of cardiac interference from the EEG, the 
method was applied on each EEG sample. Then, the HAC 
method [3] for finding spikes in multichannel EEG record-
ings was applied to assess whether the cardiac interference 
was still present in the EEG. The EEG was considered suc-
cessfully corrected only after no remaining cardiac interfer-
ence was found in any of the EEG channels. The results were 
compared to those of an alternative cardiac interference 
removal method [13]: for each EEG channel, an ensemble-
average (EA) method is used to estimate the cardiac interfer-
ence directly from the EEG data. The estimated interference 
is repeated time-locked to the QRS complexes in the ECG 
channel and is subtracted from each EEG channel. This 
method is based the following assumptions: 

1) The cardiac interference in the EEG signal is time-locked 
to the peaks in the ECG channel. 
2) The shape of the cardiac peaks is the same over time. 
3) The corrupted EEG is a linear mixture of EEG and cardi-
ac interference. 
4) The EEG signal follows a Gaussian distribution. 

In accordance with [13], the average signal starts 200ms 
before the QRS complexes in the ECG channel. 

III. RESULTS 

A.  Detecting Cardiac Peaks in the ECG Signal 

Overall sensitivity of the QRS detection was 0.96 and 
ranged from 0.89 to 1; only one subject exhibited a sensitivi-
ty of 0, i.e. no QRS peaks were correctly identified. This was 

a) EEG signal (Channel Pz) with cardiac interference 

 
b) EEG signal after two-step regression 

 

Figure 2.  Illustration of the two-step linear regression. 
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due to high-amplitude interference in the ECG channel that 
distorted the initial values of the threshold T1. 

With the peak detection method, overall specificity was 
0.80 ranging from 0.67 to 1 for the individual subjects. The 
lowest specificity was measured for the subject whose ECG 
channel had been corrupted by high-amplitude interference. 

B. Removing Cardiac Peaks 

To compare the performance of the QRS-based regres-
sion method and that of the EA algorithm, both were applied 
to the same data. The HAC method [3] was used to detect 
any residual cardiac interference on the corrected signals. 
Table 1 provides the results obtained from this procedure. 

TABLE I.  RESULTS OF QRS-BASED REGRESSION AND EA METHODS 

Subject 
Interference left 

Subject 
Interference left 

QRS Reg EA QRS Reg EA 

1 - - 16 - - 

2 - - 17 - - 

3 - - 18 - - 

4 - - 19 - - 

5 - X 20 . - 

6 - - 21 X - 

7 - - 22 - - 

8 - - 23 - - 

9 X X 24 - - 

10 - - 25 - - 

11 X X 26 - X 

12 - - 27 X - 

13 - X 28 X X 

14 - - 29 - - 

15 X - 30 - - 

‘X’ means that residual cardiac interference was detected after correction. 

It is clear that the performance of the two methods is sim-
ilar; both were able to correct the cardiac interference with 
24 out of 30 subjects (i.e. 80%). The QRS-based regression 
method failed to remove the cardiac interference in the EEG 
recordings of 6 subjects (9, 11, 15, 21, 27, and 28). Further 
analyses showed that, with five of them, the cardiac interfer-
ence in the EEG channels differed both in waveform and 
synchrony from the QRS complexes in the corresponding 
ECG channels. The sixth subject exhibited high-amplitude 
interference in the ECG channel, which diminished the quali-
ty of the QRS detection. 

The EA method failed to remove the cardiac interference 
for the subjects 5, 9, 11, 13, 26, and 28. With these subjects, 
the EEG recordings contain interference of unknown origin 
(e.g. movement, or poor electrode contact). These artifacts 
altered the average signal, reducing the quality correction. 

IV. DISCUSSION AND CONCLUSIONS 

This paper describes a robust method for the automated 

removal of cardiac interference from the EEG using a simul-

taneously recorded ECG. Accurate correction was achieved 

by using real QRS complexes. Based on a sample data set of 

30 EEG segments, our method was able to remove the cardi-

ac interference in 80% of the samples. The EA method, 

achieving the same correction rate, performs without addi-

tional ECG.  

The EA method performs well in cases when cardiac inter-

ference in EEG varies in synchrony or shape from the QRS 

complexes of the ECG, or when the ECG is subject to inter-

ference itself. However, the EA method is prone to other 

than cardiac interference in the EEG. In this common case, 

the QRS-method is able robustly correct cardiac interference 

in the EEG. Besides, a major advantage of the QRS-based 

method over the EA method is that, apart from the locations 

of the cardiac peaks, EEG signals remain unchanged. Since a 

simultaneously recorded ECG channel is standard clinical 

practice, the need for the ECG signal is justified. In sum-

mary, the QRS-based regression method has proved effective 

in removing cardiac interference from the EEG even in pres-

ence of additional non-cardiac interference in the EEG. 
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