
 

Abstract — Electro-chemical signals are often contaminated 

by drift, making accurate estimation of signal parameters 

challenging.  We propose a method based on statistical machine 

learning to predict and remove drift from biosensor signals. The 

proposed method decomposes the observed signal into a sparse 

linear combination of pure drift and signal basis vectors. First, 

drift and signal basis sets are constructed using nearby pure 

drift and parametric signal models, respectively.  We then build 

on the LASSO framework and formulate drift prediction as an 

optimization problem by projecting the observed signals into 

the drift and signal basis sets.  This minimizes MSE between the 

predicted and observed signal under the constraints that 

weights on the drift and the signal bases are non-negative and 

have sparse representation. Validation tests with synthetic data 

demonstrate the effectiveness of the proposed framework. 

Experimental results over a large number of real data 

demonstrate robustness of the proposed approach.  

 

I. INTRODUCTION 

An affinity biosensor is a device that can detect and assay 
specific target bio-molecules by using probe molecules 
immobilized on the sensor surface. The probes are designed to 
bind both the surface and the desired target. In the case of an 
impedance biosensor, binding results in electrical changes at 
the surface which are detected by measuring the instantaneous 
complex impedance magnitude signal. In a micro-array of 
sensors, several time-dependent signals are acquired in 
parallel.  Details of such a biosensor system are described in [1] 
and [2]. 

Drift in such biosignals contaminates them and usually 
leads to poor estimation of binding and elution parameters.  As 
shown in Fig. 1, there are 15 channels in our biosensor device 
and in each channel, the curve represents the impedance 
magnitude changing over time. Due to drift, observed binding 
signal can deviate from the ``true'' signal expected from the 
electrochemistry.  Previous drift removal work has been based 
on polynomial fitting, linear detrending, moving average 
removal (MAR), and the wavelet transform [3][4].  For 
instance, [4] presents an approach for removing slow baseline 
drift components from electrocardiograph signals that uses the 
discrete wavelet transform.  These filtering and fitting 
approaches mainly rely on the assumption that the drift 
satisfies a parametric time-domain model, or has energy 
concentration in a band of frequencies. However, these 
assumptions do not apply to the drift generated from many 
biosensor signals, and imposing such assumptions will limit 
the accuracy of drift prediction and parameter estimation. 
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As observed from the experimental data and reported in 
the literature [3][4], the main challenges for estimating drift 
components from biosensor signals are (1) the cause of drift in 
the impedance response is unknown, thus making it difficult to 
remove the drift by simply calibrating the devices; (2) As far 
as we know, there is no parametric model available to 
characterize the pattern of the drift.  To this end, we propose 
the use of machine learning methods to predict and remove 
drift in biosensor signals in a non-parametric way. The 
proposed method is general, training-free, and the similarity of 
drift patterns is learned online.  Therefore, it is adaptive to 
various drift patterns over long time periods, under different 
temperatures, voltages, and stimulus frequencies. 

 

 

Figure 1. Visual illustration of the observed drifts (red arrow), estimated signal 
component (black arrow) and binding signals (blue arrow) from biosensors. 

 

II. THE PROPOSED FRAMEWORK FOR DRIFT REMOVAL 

Based on our previous work as described in [1], the 

impedance magnitude in the signal component can be 

represented parametrically by the exponential form, 

 ( ) (1 exp )snz n B A            (1) 

That is, the signal component can be characterized by three 

constant positive parameters A, B, and s where A is the 

amplitude of the signal, s is the exponential time-constant, 

and B is a constant offset. A, B, and s are unknown and we 

would like to estimate these parameters after drift removal.  

For simplicity, we vertically shift the first sample of the drift 

and the binding signals to the origin so that B vanishes.  The 

following analysis concerns only the estimation and selection 

of A and s. The observed signal y can be represented as 

  ( )    ( )    ( )   ( )      (2) 
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where z(n) is the sampled parametric signal component of 

Eq. 1, d(n) is the unknown non-parametric drift component, 

and v(n) is random noise. The goal is to estimate drift from 

the observed signal y(n) and then remove it, leaving a more or 

less uncorrupted impedance signal. Typically, leveraging the 

similarity of the drift patterns within a certain time period, the 

observed binding signals are projected onto selected drift 

basis and signal basis, relying on the LASSO optimization 

method, where the drift basis vectors can be either learned 

using dictionary learning or selected from the previous pure 

drift impedance responses that correspond to injections
1
 of 

only buffer (containing no target) into the test chambers. 

A. Similarity of Drift across Injections 

We first investigate the similarity of pure drift data (i.e., 
without the signal component) by using our recently 
developed information theoretic measure presented in [5].  
This measure accounts for the temporal structure of the data 
and allows us to calculate the pair-wise directed information 
(DI) between the drift in two channels from the second and the 
third injections and plot a similarity matrix depicted in Fig. 2. 

Fig. 2 shows that in many channels, the drift shares a 
strong similarity with other drift in different channels in the 
adjacent injection. High statistical similarity in the adjacent 
injections allows us to estimate and remove drift component in 
the impedance response.  

 

 

Figure 2. Visual illustration of drift similarity across injections. Left panel 
demonstrates an example of the impedance magnitude in channel 12 for the 

2nd and the 3rd injections. Right panel plots the similarity matrix of the 
pair-wise directed information (DI) across channels from the 2nd injection to 

the 3rd injection (red color indicates high similarity). 

 

B. Positive Lasso Optimization 

The LASSO algorithm was originally proposed by 
Tibshirani et al. in [6] as a least absolute shrinkage and 
selection operator. As a variant of LASSO, Positive LASSO 

aims to solve a similar optimization problem using 1l

regularization with the additional constraint that the weights 
be non-negative.  Here we propose to formulate the drift 

prediction as a 2l - 1l  optimization similar to Positive LASSO 

[7]. Denote the vector y as the observed binding signal in a 

single channel. This signal vector is of size 1t , where t is 

the number of samples. Define the matrix 1 2[ , ]X X X , 

where 1X  is regarded as the set of drift basis vectors of size 

1t m  (where 1m  is the number of drift basis vectors), and 

2X  is regarded as the set of signal basis vectors of size 

 
1 Solution is injected into the sensor test chambers using a pipette. 

2t m (where 2m is the number of signal basis vectors). The 

vector 1 2[ , ]T Tw w w  is of size 1 2( ) 1m m  , where 1w  

and  2w represent the weights on the drift basis and the signal 

basis respectively. The parameter   controls the sparsity of 

the weights. Drift prediction can be formulated as an 
optimization problem as 

 
2

2 1arg min || || || ||
w

y Xw w      (3) 

where 0w  . In other words, the optimization jointly 

minimizes the 2l -norm of the prediction error and 1l -norm of 

the weight vector.  The implementation employs the interior 

method for  1l  regularized least squares as described in [7]. As 

depicted in Fig. 3, our drift prediction algorithm searches for 
the optimal weights on the signal and drift basis vectors so that 
the error between the observed binding signals and the 
weighted sum of signal and drift basis vectors is minimized, 
subject to a non-negativity constraint and a sparsity constraint 
on the weights. Sparsity ensures that the number of non-zero 
weights is very small compared to the total number of weight 

coefficients. Given the optimized weights 1 2
ˆ ˆ ˆ[ , ]w w w , the 

predicted drift component can be computed as 1 1
ˆ ˆyd X w

and the predicted signal component can be estimated as 

2 2
ˆ ˆ

sy X w .  

 

 

Figure 3. Decomposing binding signals into drift components and signal 
components, where binding curves are the data under analysis, the pure drift 

basis is selected using prior experimental data and the signal basis is 
constructed using the exponential model. 

 

  Since an approach based on dictionary learning is not 

suitable for online computation, the drift basis 1X  here is 

defined to be the 15 drift responses
2
 from the previous buffer 

injection. The signal basis  2X  is constructed according to 

Eq. 1 by varying s in the interval [0.003, 0.043] with stepsize 
of 0.002, and A is selected to be 4000 or 2000. The size of the 
signal basis is 42. The values of A and s are chosen according 
to the typical ranges of A and s encountered from many prior 
assays using the biosystem. Theoretical analysis and 
experimental results show that including additional signal 

 
2 As discussed in [1], our biosensor array is composed of 15 channels. 
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basis vectors does not necessarily increase the accuracy of 
prediction and will increase the computational burden.  Fig. 4 
and Fig. 5 show example results of drift prediction. 

 

III. EXPERIMENTAL RESULTS 

Performance Evaluation: In order to demonstrate the 
effectiveness and efficiency of the proposed drift prediction 
algorithm, we first validate the algorithm using synthetic data 
where the ground truth of the signal component and the drift 
component are available. For synthetic data, we evaluate the 
root mean square error (RMSE) of the binding curves, RMSE 
of the estimated signals and RMSE of the estimated drifts. For 
each channel i, denote the total number of samples as N, the 
observed binding signal as y(i) and the predicted binding 

signals as ˆ( )y i . RMSE of the binding signal is defined as: 

2

1

ˆ[( ( ) ( )) / max( ( ))]
N

i
binding

y i y i y i

RMSE
N








 

The RMSE of the estimated signals and the estimated 

drifts are defined in a similar manner by replacing ˆ( )y i  with  

ˆ ( )sy i or ˆ ( )dy i , and replacing ( )y i  with ( )sy i  or ( )dy i

as the case might be. In our experimental results, N is selected 
to be the minimum of the lengths (in samples) of the observed 
binding signals and the previous drift basis. To further assess 
the robustness of our system in terms of the ability to separate 
the signal from the drift, we define the signal-to-drift ratio 
(SDR) in a manner similar to the signal-to-noise ratio (SNR) 

as 1010log
signal

drift

E
SDR

E
 , where signalE and driftE

characterize the energy of the signal and the drift respectively. 

Validation on Synthetic Data: For real data, the ground 
truth of the signal component and the drift component are not 
available. Therefore, we first conducted two sets of validation 
experiments with synthesized signals to demonstrate the 
effectiveness of the proposed algorithm. For all the 

experiments,  was selected in the interval [1.5, 2] which 

achieves the best performance, and the number of iterations 
required for convergence was set to 600. In the first set of 
validations, the binding signals are represented as the 
summation of pure drift signals 

3
 and pure exponential signals. 

We generated the ground truth binding signals by choosing 
A=3500, s=0.0076 in the exponential function. Notice that the 
selection of s is not contained in the signal library in order to 
evaluate the robustness of the proposed algorithm. The ground 
truth drift component employed to construct the artificial 
binding curve was selected from a set of experimental 
buffer-only assays under stimulus conditions of 50mV and 

960Hz, and a sensor temperature of 37 C . The drift basis was 

selected from a different set of experimental buffer-only 

assays under operating conditions of 100mV, 24Hz and 42 C . 

We evaluated the prediction performance of these synthetic 
data and plotted in Fig. 6 the signal weights against signal 

 
3 Said signals were obtained from previous assays using buffer solution.  

library index. As shown there, the four non-zero signal 
weights correspond to (A=4000, s=0.007), (A=4000, 
s=0.009), (A=2000, s=0.007) and (A=2000, s=0.009). 
Accurate estimation of the parameter values, compared to the 
ground truth, demonstrates the effectiveness of the proposed 
approach.  

 

 

Figure 4. Drift estimation example result including the observed response of 
the binding signals (blue), the extracted exponential signal (red), the estimated 

binding curve (green) and the extracted drift component (black). 

 

 

Figure 5. Drift predictions for 15 channels, demonstrating good prediction 
performance consistently (legend of the figure is the same as Fig. 4). 

 

 

Figure 6. Plot of magnitude of signal weights versus index of signal basis. 

 

In a second validation experiment, the binding signals are 
represented as the summation of a mixture of two exponential 
signals, a pure drift component, and additive zero mean 
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Gaussian noise.  We varied the variance of the noise and 
plotted in Fig. 7 the RMSE of the signal component and the 
drift component versus SNR, ranging from 15dB to 35dB. 
Fig. 7 indicates that the prediction algorithm is robust to noise. 
The RMSE varied from 8% to 5.5% when SNR was varied 
from 15 dB to 35 dB.  Moreover, the noise on the signals did 
not affect the prediction performance on drift. That is, the 
signals and drifts are well separated by the proposed 
prediction algorithm. The analysis of the RMSE versus the 
signal-to-drift ratio (SDR) shown in Fig. 8 indicates that when 
the SDR is larger than 15dB, the prediction algorithm 
performs very well for drift removal.  

 

 

Figure 7. The RMSE versus the SNR for the estimated signal component (left) 
and the estimated drift component (right).  

 

xperimental Results on Real Data: Evaluating on real 
data, we calculated the RMSE of the predicted binding signals 
over 350 trials and plotted the distribution of RMSE in Fig. 9. 
As shown there, for about 75% of the data, the RMSE of 
prediction using the proposed algorithm was below 2 %. Only 
about 3% of the data had an RMSE of prediction larger than 
5%.We experimented with several other drift removal 
methods such as Discrete Wavelet and Fourier representations, 
and found our method to be superior. Other proposed methods 
such as polynomial fitting and detrending do not apply to our 
problem setting.  

 

 

Figure 8. The RMSE of the estimated signal component versus the signal to 
the drift ratio (SDR). 

 

The high accuracy of the proposed approach can be 
attributed to the fact that the proposed algorithm does not rely 
on any parametric model and is capable of choosing the 
optimal weights that minimize the prediction error given the 

high similarity among drift basis vectors. The 3% of 
impedance data with the RMSE of prediction larger than 5% 
can be interpreted as being outliers that are dissimilar to any of 
the linear combinations of the previous drift basis. The 
removal of these outliers to further enhance prediction 
performance is future work. The MATLAB implementation of 
the proposed algorithm takes only 1 minute on average to 
predict the drift from all 15 channels of impedance data using 
400 samples for each signal.  

 

 

Figure 9. Distribution of prediction RMSE over 350 trials of real data. 

IV. CONCLUSION 

We have proposed a novel machine learning framework 
that is efficient and effective at predicting and removing the 
various patterns of unknown drift that often occur in affinity 
biosensor signals, thus improving their quantification as 
described in [1].  The method works by decomposing the 
binding curves into a drift component and a signal component.  
The algorithm requires no training and can therefore operate in 
real-time---a key feature of [1].  Validation with synthetic data 
demonstrates the robustness of our scheme, and results using 
real biosensor data show that the proposed approach achieves 
high prediction accuracy over a large dataset of assays.  
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