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Abstract—Development of methods to detect and classify 

neural spikes in extracellular voltage signals (e.g. commonly 

referred to as spike sorting) have been one of important subjects 

in neuroscience and neural engineering. Most of previous spike 

sorting methods suffer from unresolved overlaps of spike 

waveforms which make timings and shapes of spikes unclear. 

Some methods have got a handle on this problem, but they had 

restrictions about the type of electrodes or complexity of 

overlaps. In this paper, we attempted to develop a spike sorting 

method for the signal containing overlaps of the arbitrary 

number of spikes recorded with arbitrary electrodes. We 

estimated templates and timings of spikes by the inference based 

on hidden Markov model. In order to avoid the problem of too 

high computational cost and too much decomposition caused by 

assuming arbitrary overlaps, we imposed the weak probabilistic 

penalty on overlaps in the model and reduced computation of 

estimation by approximating low probabilities to zero. As the 

result of assessments using simulated signal and real 

extracellular recordings, we showed that proposed method 

could robustly detect and sort complexly overlapped spikes. 

I. INTRODUCTION 

Multi-unit spike trains of neurons obtained by extracellular 
voltage recordings have been important bases for analyses of 
information processing in neural systems. However, in the 
extracellular recording, spikes of multiple neurons were often 
mixed in the signal recorded from an electrode. Therefore we 
have to not only estimate timings of spikes, but also 
discriminate spikes from different neurons in order to obtain 
spike trains of each neuron. The technology referred to as 
spike sorting has been developed to solve this problem [1][2]. 

It is common to discriminate spikes from different neurons 
based on the difference of spike waveforms [1]. In this 
approach, spike sorting can be interpreted as the estimation 
problem of the spike waveform corresponding to each neuron 
(spike templates) and spike timings of each neuron. In many 
previous spike sorting methods, spikes in the recorded signal 
were extracted by detecting voltage signals exceeding 
predefined threshold and extracted waveforms were classified 
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by some clustering method to obtain spike templates and spike 
timings of multiple neurons [3-8]. These methods showed 
good performance when spikes were sparse. 

However, when spikes were distributed densely and 
synchronously, unresolved overlaps of spikes worsened the 
performance of these methods. Dense and synchronous 
spiking has been the frequent phenomenon found in bursting 
over the neuronal network [9], responses evoked by electrical 
stimuli [10], and so on. Therefore, sorting of overlapped 
spikes has been one of the issues in spike sorting [1][2]. 

One of the solutions to the issue was the use of closely 
spaced multi-electrodes and decomposition of overlapped 
spikes by spatial information [11-14]. In spite of robustness to 
overlaps, the methods cannot be applied to sparsely-positioned 
electrode arrays e.g. Utah electrodes widely used in the 
Brain-Machine Interface [15][16] and the Multi-Electrode 
Array (MEA) for recording from cultured neurons [9][10]. On 
the other hand, methods to detect and sort overlapped spikes 
recorded without multi-electrodes have been also proposed 
[17-19]. However, these methods had limitation of the allowed 
number of spikes in an overlap to avoid high computational 
cost and over-decomposition of spikes. Previous methods 
have not been able to achieve the estimation of spike templates 
and timings in case of overlaps of the arbitrary number of 
spikes from the signal recorded without multi-electrodes. 
Though the recently developed method [20] can be a solution, 
it do not consider properties of neural spikes such as the 
refractory period and the variability of firing rates. 

In this paper, we attempted to develop a spike sorting 
method for the signal containing overlapped spikes without 
these restrictions. Our method is based on the strategy by 
Herbst et al. [19]. Extracellular recordings and generation of 
spikes were modeled as the hidden Markov model (HMM) 
that can generate overlapped spikes and spike templates and 
spike timings were estimated using α-β algorithm and 
Expectation-Maximization (EM) algorithm. However, we 
imposed the probabilistic penalty on the number of overlaps in 
the model and reduced computation of estimation by 
approximating low probabilities to zero. They enable us to 
remove the restriction of the number of spikes in an overlap 
without the problem of high computational cost and 
over-decomposition of spikes.We applied our method to 
simulated neural signals and recordings from cortical neurons 
cultured on MEA and confirmed that our method could 
robustly estimate appropriate templates and timings of 
complexly overlapped spikes. 

II. METHODS 

A. The Model of Extracellular Voltage Recordings 

We assumed that T time samples of the recorded signal 

                   contain spikes generated by N neurons 
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with additive Gaussian noise with variance σ, and the vector 

      [ ]   [ ]     [ ]  was defined as the waveform 

of the spike generated by neuron n. Furthermore,      
             was defined as the number of the neuron 

which started to generate a spike at each time samples (if 

there is no spike,     ). Based on these assumptions, we 

had the recording model using the spike train vector 

     [ ]  [   ]    [     ]  : 
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B. The Model of Spike Trains 

We also derived the model of the spike train   . We assumed 

   followed the multinomial distribution and the probability 

for a neuron to fire was determined with the parameters    

and           𝑁 . We also took into account the 

refractory period, to be more precise, once a neuron fired, it 

cannot fire again in M time samples. Furthermore, in our 

model, the probability for a neuron to fire was reduced in M 

time samples after another neuron fired. This assumption 

made our method avoid decomposing the signal to too many 

overlapped spikes. After all, the model was 
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   𝑧𝑡 1[𝜏] was Dirac’s delta and 𝜙 was the weighting 

coefficient preventing over-decomposition. 

C. Estimation of Hidden Variables and Parameters 

Expectation-Maximization (EM) algorithm was used to 

estimate parameters in above-mentioned model. EM 

algorithm can estimate model parameters in the presence of 

hidden variables by repeating two steps, E-step and M-step.  

In E-step, probability distributions of hidden variables 

          |       ,        −   p      − |         

were estimated under fixed model parameters using α-β 

algorithm. In this algorithm, alpha-messages  ̂     
    |        were recursively estimated as 
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After that, beta-messages  ̂     
   𝑡 1  | 𝑡   

   𝑡 1  | 1 𝑡   
 were 

recursively estimated as 
 ̂       (10) 
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      and        −   were calculated from alpha-messages 

and beta-messages. 
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In M-step, model parameters were updated to maximize the 

expected value of the complete data log-likelihood 

(Q-function).   and    were updated as  
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   was updated by solving following equation: 
A all  𝐛 (16) 
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σ was updated as 
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The number of neurons N was chosen by minimizing 

Bayesian information criterion (BIC).  

 

Figure 1. A part of the simulated signal and spike waveforms contained 
in the signal. Almost all spikes were overlapped and there were complex 
overlaps of more than three neurons. (a) Simulated signal. (b) Spike 
waveforms contained in the signal.  
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Figure 2. Five spike templates used in the simulation and spike templates 
estimated by our method. (a) Spike templates used in the simulation. (b) 
spike templates estimated by our method 

 

Figure 3. Spike timings used in the simulation and spike timings 
estimated by our method. (a) Spike timings used in the simulation. (b) 
spike timings estimated by our method 
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These procedure needed too high computational cost 

because of high dimensionality of   . To reduce the 

computational cost,  ̂     smaller than a given threshold pth 

was approximated by zero and we calculated all the 

probabilities for only {  
   

}
     𝑡

, nonzero instances of 𝑧 .    

was the number of nonzero instances at sampling time  .  

III. EXPERIMENTS AND DISCUSSION 

A.  Assessments using Simulated Signals 

We assessed the performance of our method by applying it 
to the    -second simulated signal containing a lot of complex 
overlaps of spikes (shown in Fig. 1). In simulation, spike 
shapes shown in Fig. 2(a) were present in the signal whenever 
indicated by the timings shown in Fig. 3(a). The signal was 
additionally corrupted by adding Gaussian noise. The standard 
deviation of noise was 15 μV and the sampling rate was 10 
kHz. We applied our method by setting the parameter values 
to 𝜙        t      −         s  and detected 
spikes when the probability      of spiking exceeded the 
value of 0.5. 

As the result, all the spike templates were appropriately 
estimated as shown in Fig. 2(b) and complexly overlapped 
spikes shown in Fig. 1 were all detected. However, 2 positive 
errors and 25 negative errors were found as shown in Fig. 3(b) 
(The number of spikes in simulation (Fig. 3(a)) was 302). One 
of reasons of these non-negligible negative errors was 
canceling out of positive and negative spikes. Note that the 
numbering of neurons was arbitrary and not same between 
simulation and in estimation. 

B. Assessments using the Real Neural Signal 

We also assessed our method using the eight-second signal 
recorded from neurons cultured on the Multi-Electrode Array 
(MEA). Cortical tissues were isolated from Wistar rat 
embryos (embryonic days 18) and dissociated by digestion 
with 0.1% trypsin-EDTA. The dissociated cells were plated on 
MEA substrates coated with polyethylenimine at a density of 

1.7 × 10
3
 cells/mm

2
. The MEA substrate used in the 

experiment was MED545A (Alpha MED Scientific Inc.), 

which had 8 × 8 indium–tin–oxide (ITO) electrodes coated 

with platinum black. Each electrode had a surface of 50μm 
square and the distance between electrodes was 450μm. The 
culture medium consisted of Dulbecco’s modified eagle’s 
medium (DMEM), 5% fetal bovine serum, 5% horse serum, 
2.5μm/mL insulin and 5-40 U/mL penicillin streptomycin. 
The cultures were maintained in an incubater at 37 

o
C, 5% 

CO2, and in a water-saturated atmosphere. We recorded 
voltage signals from one of the electrodes for 10 minutes after 
45 days in vitro. The signals were amplified to 1000 times and 
filtered to cut frequency under 100 Hz. The sampling rate was 
10 kHz. A part of the recorded signal is shown in Fig. 4(a). We 
applied our method to the signal with the setting of parameters 
same as the simulation experiment. 

As the result, eight spike templates were created as shown 
in Fig. 4(d) and the spike timings were estimated as shown in 

1994



  

 

Figure 4. The result of estimation from the signal recorded from cortical 
neurons cultured on the Multi-Electrode Array (MEA) by our method. 
Eight templates were obtained and complexly overlapped spikes could be 
decomposed and the original signal could be appropriately reconstructed 
from estimated templates and spike timings. (a) The original signal 
recorded from cultured neuron. (b) Spike waveforms detected from the 
recorded signal by our method. (c) The signal reconstructed from 
estimated templates and timings. (d) Eight spike templates obtained from 
the recorded signal by our method. 

Fig. 4(b). In Fig. 4(b), more than three or four spikes were 
superimposed at the same position, which means complex 
overlaps were decomposed. We reconstructed the signal from 
estimated timings and templates using the recording model (1) 
and obtained the signal similar with the original (Fig. 4(c)). It 
means that the decomposition of complexly overlapped spikes 
was appropriate. However, it was uncertain whether these 
spikes were “neural” spikes or artifacts. The extracellular 
voltage signal with simultaneously recorded the intracellular 
voltage signal will be needed for more accurate validation. 

IV. CONCLUSION 

In this paper, we developed the method to estimate spike 
templates and timings from the signal containing overlaps of 
the arbitrary number of spikes. In our method, the inference 
based on HMM with the probabilistic penalty was efficiently 
calculated by approximation. We assessed the performance of 
the method and showed that it could appropriately decompose 

the simulated and real signals containing complexly 
overlapped spikes. Our method will help more accurate 
analysis of highly synchronized neural activity such as 
bursting [9] or responses evoked by electrical stimuli [10]. 
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