
  

99� 

Abstract—Hypoglycemia is dangerous and considered as a 

limiting factor of the glycemic control therapy for patients with 

type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is 

especially feared because early warning symptoms are unclear 

during sleep so an episode of hypoglycemia may lead to a fatal 

effect on patients. The main objective of this paper is to explore 

the correlation between hypoglycemia and 

electroencephalography (EEG) signals. To do this, the EEG of 

five T1DM adolescents from an overnight insulin-induced 

study is analyzed by spectral analysis to extract four different 

parameters. We aim to explore the response of these 

parameters during the clamp study which includes three main 

phases of normal, hypoglycemia and recovery. We also look at 

data at the blood glucose level (BGL) of 3.3-3.9 mmol/l to find a 

threshold to distinguish between non-hypoglycemia and 

hypoglycemia states. The results show that extracted EEG 

parameters are highly correlated with patients' conditions 

during the study. It is also shown that at the BGL of 3.3 

mmol/l, responses to hypoglycemia in EEG signals start to 

significantly occur. 

I. INTRODUCTION 

Hypoglycemia, or abnormally low blood glucose level 
(BGL), is the most common but dangerous complication of 
the intensive insulin therapy for patients with type 1 diabetes 
mellitus (T1DM). Hypoglycemia impacts life quality of all 
T1DM patients, limits their intellectual as well as physical 
activities, and potentially causes to irreversible severe effects, 
such as cognitive impairments, seizures, coma, and even 
death. A study in 2004 reported that severe hypoglycemia 
(defined as episodes in which patients need assistance to re-
establish the normal BGL) happens in one third of 1076 self-
reported participants with an incidence rate of 1.3 
episodes/patient-year [1]. Nocturnal hypoglycemia is 
especially dangerous because sleep reduces and obscures 
early warning symptoms, so that an initially mild episode 
may become severe. It was reported previously that almost 
50% of all episodes of severe hypoglycemia occur at night 
during sleep [2]. Because of its severity, intensive research 
has been devoted to the development of systems that can 
detect the onset of hypoglycemia episodes, and then give an 
alarm to provide enough time for patients and carers to take 
action. 
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Under the occurrence of hypoglycemia, the human brain 
is one of the first affected organs. Because it cannot 
synthesize as well as store this primary metabolic fuel, the 
brain depends on a continuous supply of glucose and is 
vulnerable to any glucose deprivation [3]. Since the 
electroencephalogram (EEG) is directly related to the 
metabolism of brain cells, a failure of cerebral glucose supply 
can cause early changes in EEG signals. A number of studies 
have reported important traces in EEG signals induced by 
hypoglycemia episodes in T1DM patients [4, 5]. Recent 
studies also lead to acceptable results which show the 
potential ability of detecting hypoglycemia from EEG signals 
[6-8]. Nevertheless, all of these results need to be improved 
further in order to be applied into the real clinical 
environment.   

In our previous works, EEG signals of five T1DM 
adolescent patients from a glucose clamp study were 
analyzed to explore the difference in EEG signals between 
patients’ non-hypoglycemia state and hypoglycemia state. 
Statistical analysis yields some significant changes in EEG 
signals which can be used efficiently as inputs of a 
classification algorithm for detecting hypoglycemia [8, 9]. In 
this paper, we aim to investigate the correlation between four 
spectral EEG parameters with patients' conditions during the 
whole clamp study which includes three different states of 
normal, hypoglycemia and recovery. We also look at the 
BGL area of 3.3-3.9 mmol/l (60-70 mg/dl whole blood 
glucose) to figure out the EEG response to the potentially 
early onset of hypoglycemia. This paper is organized as 
follows. Section II provides an overview of the methodology 
used in our study. Results of the study are mentioned in 
Section III. Conclusions are drawn in Section IV. 

II. METHODS 

A. Study 

Five T1DM adolescent patients (between the ages of 12 
and 18 years old) volunteered for an overnight hypoglycemia 
study at the Princess Margaret Hospital for Children in Perth, 
Australia. The target BGL profile of the study is plotted in 
Fig.1. Each study consisted of five phases approximately: 
baseline (for reference only), euglycemia (AB), ramp (BC), 
hypoglycemia (CD), and recovery (DEF). Hypoglycemia is 
defined as BGL lower than 3.3mmol/l.  

During the study, EEG signals were continuously 
recorded by using a Compumedics system with the sampling 
rate of 128 Hz. The EEG electrodes were positioned at four 
channels O1, O2, C3 and C4 according to the International 
10/20 system, referenced to A1 and A2, respectively. We 
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also placed two electrodes at patients’ chins to acquire the 
electro-myogram (EMG) signals and two electrodes near 
patients’ eyes to measure the electro-oculogram (EOG) 
signals. The actual BGLs of patients were routinely collected 
to be used as reference using Yellow Spring Instruments with 
the general sampling period of 5 minutes. Data were 
collected with the approval of the Women’s and Children’s 
Health Service, Department of Health, Government of 
Western Australia, and with informed consent.  

B. Signal Processing and Feature Extraction 

After finalizing the signal acquiring step, signal 
processing is carried out to eliminate unwanted noise and 
artifact in signal.  First, raw EEG data are filtered by using an 
IIR highpass filter with a cut-off frequency of 2 Hz to get rid 
of low frequency artifacts and a notch filter at 50Hz to 
remove power noise. A visual artifact rejection method is 
applied to exclude epochs contaminated with artifacts. 
Segments containing significant artifacts are discarded, based 
on EMG and EOG signals. Finally, at each blood sampling 
point, a 40-second epoch of non-artifact signal is extracted. 
Each epoch is labeled as Normal, Early Onset, Hypoglycemia 
or Recovery based on the corresponding phase of the study. 
Referring to Fig. 1, Normal is defined as segment ABB1, 
Early Onset is defined as segment B1C, Hypoglycemia is 
defined as segment CD and Recovery is defined as segment 
DEF. 

Spectral analysis is applied to explore EEG signals in 
frequency domain. Non-artifact 40-second EEG epochs are 
segmented into 5-second non-overlapping segments. By 
using Fast Fourier Transform (FFT), each segment is 
transformed into the frequency domain which results in the 
power spectrum ( )iP f , with frequency resolution of 0.2 Hz. 
The power spectrum is then subdivided into 3 frequency 
bands: theta (�: 4-8Hz), alpha (.: 8-13 Hz) and beta (�: 13-
30Hz). Previous EEG studies showed that the reduced alpha 
activity is associated with the lack of vigilance or awareness 
[10, 11]. This is a common symptom to T1DM patients 
which normally happens under hypoglycemia conditions [4, 
12]. In our previous work, it is demonstrated that there is no 
significant and consistent response in the beta frequency 
band. Because of these reasons, in this study, we concentrate 
on analyzing EEG spectral parameters that characterize the 
shift of power spectrum within theta and alpha bands. Thus, 
from the spectrum of each band, the following four features 
are estimated. 

Power (P):  The power level within each frequency band 
is a common feature in EEG research. In our study, the power 
level within each frequency band is estimated from the power 
spectrum ( )iP f by using a numerical integration technique 
(the trapezoidal rule).        

Centroid Frequency (CF): This feature can be referred as 
the center of gravity of the spectrum within each band. It is 
estimated as the frequency which subdivides the area under 
the spectral curve into identical parts.  
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Spectral Variance (SV):  This feature indicates how the 
power spectrum is spread out within each frequency band.  
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Spectral Entropy (SE):  This feature is a measure of the 
distribution of normalized power spectrum within a 
frequency range. This feature reflects the distribution in the 
power spectrum. It reaches to maximum when all frequencies 
in the power spectrum have the same power level. In the case 
that power spectrum concentrates in a smaller frequency 
range, the SE will decrease.  
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where fN  is the number of frequency bins within each 

frequency band.  

In previous work, we established that there are 
similarities in EEG responses between channels in the same 
brain areas (i.e. O1 and O2 in the occipital area; C3 and C4 in 
the central area). Therefore, in this paper, for the comparison 
purpose, we only employ data from two channels C3 and O2 
which are in two different sides and areas of the brain. As a 
result, a total of 16 EEG features (4 different kinds of feature 
x 2 frequency bands x 2 channels) are estimated for each 
epoch. To reduce the variability in data, each final data point 
is estimated as the average of two consecutive non-
overlapping points.     

Statistics is applied to compare and determine the 
significance of changes in EEG signals between three 
different states of Normal, Hypoglycemia and Recovery. 
First, descriptive analysis is carried out to assess data 
distribution like mean, standard deviation, normality, 
skewness, etc. Statistical analysis of differences between 
pairs of groups is performed using t-test for features with 
normal distribution and the nonparametric Wilcoxon test for 
features with non-normal distribution. The correlations 
between EEG parameters and actual BGLs during the study 
are also analyzed by using a nonparametric ranking test. In 
all tests, probability values (p-values) less than 0.05 were 
considered to be significant. Statistical analysis is also 
implemented with the data from Early Onset data set which 
corresponds with BGL range of 3.3-3.9 mmol/l to explore the 
differences of EEG responses at two BGL thresholds of 3.3 
mmol/l and 3.9 mmol/l.  
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Fig. 1.  Target BGL profile of the induced hypoglycemia study 
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III. RESULTS 

The actual BGL profile of five patients which were 
collected during the study by the Yellow Spring Instruments 
is plotted in Fig. 2.  

Statistical results of comparison between three phases of 
Normal, Hypoglycemia and Recovery are presented in Table 
I. Significant tests are reported in bold. The centroid alpha 
frequency is showed to be the most significant feature which 
is considerably correlated to BGLs during the study at both 
channels C3 and O2 (p<0.0001). Group comparisons also 
indicate a significant decrease in the centroid alpha frequency 
under hypoglycemia conditions, and then a re-establishment 
under recovery conditions. There are significant changes in 
two other features of alpha bands which are spectral variance 
and spectral entropy at both channels.  Under hypoglycemia 
conditions, a decrease in these two features show that the 
spectrum of the alpha band tends to concentrate on a 
narrower range. Based on the mentioned results, we establish 
that during hypoglycemia, in the power spectrum of alpha 
band, there is a shift toward smaller frequencies as showed in 
Fig.3 where an example of alpha spectrums at two different 
states is presented.  

The statistical results also produce a slightly significant 
increase in centroid theta frequency at channel O2 (p=0.003). 
It is showed that the change in theta band is more significant 
at the channel O2 than channel C3. The correlation analysis 
produces slight changes in the power level of theta band at 
channel C3 (p=0.012) and alpha band at channels O2 
(p=0.01). However, these changes are not consistent with the 
group comparison which provides no difference between 
pairs of groups. 

Comparisons between data from Normal group and 
Recovery group indicate similarities in all features at both 
two channels. Based on these results, it is recognized that 
during the study, EEG responses from five patients at both 
channels significantly change under hypoglycemia conditions 
and re-establish under recovery conditions. However, it 
should be noted that the difference between Normal group 
and Hypoglycemia group is slightly stronger than the 
difference between Recovery group and Hypoglycemia 
group. These results confirm conclusions from previous 
studies that the occurrence of hypoglycemia can cause 
alternations in EEG signals and lead to impairments to the 
brain functioning of patients. 

TABLE I. STATISTICAL RESULTS 

Parameters 

 

Correlation to BGLs Mean ± SD Groups comparison p-values 

r p-values Normal (N) Hypoglycemia (H) Recovery (R) N-H H-R N-R 

C3 

P-� -0.098    0.012 2.105  ± 1.328 2.141 ± 1.698 1.846± 1.165 0.526 0.272 0.051 

P-. -0.021 0.585 1.552 ± 1.333 1.611 ± 1.123 1.624 ± 1.659 0.202 0.006 0.143 

CF-� -0.041 0.294 5.628 ± 0.302 5.659 ± 0.331 5.610 ± 0.290 0.379 0.265 0.876 

CF-. 0.156 0.001 10.255 ± 0.460 9.993 ± 0.495 10.132 ± 0.510  < 0.001 0.004 0.005 

SV-� -0.032 0.411 1.132 ± 0.229 1.163 ± 0.227 1.149 ± 0.247 0.208 0.534 0.562 

SV-. 0.057 0.143 1.844 ± 0.488 1.688 ± 0.550 1.768 ± 0.491 0.002 0.104 0.099 

SE-� -0.001 0.987 0.858 ± 0.032 0.859 ± 0.034 0.860 ± 0.038 0.672 0.454 0.246 

SE-. 0.091 0.019 0.856 ± 0.044 0.830 ± 0.064 0.847 ± 0.051  <0.0001 0.013 0.060 

O2 

P-� -0.043 0.269 2.208 ± 1.727 2.047 ± 1.388 1.897 ± 1.271 0.908 0.334 0.259 

P-. -0.105 0.010 2.258 ± 2.618 3.363 ± 5.737 2.644 ± 4.212 0.146 0.033 0.471 

CF-� -0.116 0.003 5.650 ± 0.275 5.754 ± 0.377 5.647 ± 0.290 0.008 0.011 0.695 

CF-. 0.178 < 0.0001 10.133 ± 0.392 9.863 ± 0.454 10.083 ± 0.432  <0.0001 <0.0001 0.229 

SV-� -0.076 0.048 1.133 ± 0.244 1.196 ±0.247 1.143 ± 0.235 0.008 0.042 0.476 

SV-. 0.122 0.002 1.752 ± 0.480 1.553 ± 0.576 1.731 ± 0.509 <0.001 0.005 0.329 

SE-� 0.015 0.703 0.858 ± 0.031 0.856 ± 0.038 0.859 ± 0.033 0.766 0.807 0.495 

SE-. 0.112 0.005 0.852 ± 0.070 0.818 ± 0.071 0.850 ± 0.048  <0.001 <0.001 0.730 

0 50 100 150 200 250 300
2

3

4

5

6

7

Time (minutes)

B
lo

od
 G

lu
co

se
 L

ev
el

 (
m

m
ol

/l
)

 

 

3.9 mmol/l

3.3mmol/l

   

Fig.2. Actual blood glucose level profiles in 5 T1DM adolescents�
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The responses of four extracted EEG parameters when 
patients’ BGLs = 3.3-3.9 mmol/l (labeled as Early Onset 
state) are presented in Table II. This BGL range is analyzed 
with the aim of investigating EEG responses at two BGL 
thresholds of 3.3 mmol/l and 3.9 mmol/l. The results show no 
significant difference between the Normal state and Early 
Onset state except some slight changes at channel O2. 
Comparison between the Early Onset group and the 
Hypoglycemia group produces significant changes which are 
similar to the differences between Normal and Hypoglycemia 
groups. Based on these results, we establish that at the BGL 
area of 3.3-3.9 mmol/l, there are some slight responses in 
EEG parameters; however, these changes are not significant 
until BGL lower than 3.3 mmol/l.  

IV. CONCLUSIONS 

In this paper, four EEG spectral parameters are extracted 
to explore the EEG response of 5 T1DM patients during an 
overnight glucose clamp study. The study results indicate that 
under hypoglycemia conditions, there are significant changes 
in the alpha band of EEG signals. Under recovery conditions, 
these changes are shown to regain the normal state prior to 
hypoglycemia. However, this re-establishment does not 
happen consistently with all features in all patients. These 
results lead to a conclusion that hypoglycemia are potential to 
make irrecoverable damages to human brain. By analyzing 
the data from the BGL range of 3.3-3.9 mmol/l, we also 
conclude that the mentioned responses to hypoglycemia only 
significantly occur when patients’ BGLs falling to the 
threshold of 3.3 mmol/l.  

One of the limitations of this current study is the shortage 
of data. The data set from five participated patients is 
sufficient to establish that hypoglycemia induces changes in 
EEG signals. However, in order to apply these results to 
develop a hypoglycemia detecting system that can perform in 

real clinical environments, other studies with more 
participants need to be implemented in future. Furthermore, it 
should be noted that this is a glucose clamp study, which is 
not spontaneous hypoglycemia. In future work, a natural 
hypoglycemia study would be carried out to explore the 
difference in EEG responses to insulin-induced 
hypoglycemia and spontaneous hypoglycemia. 

With the achieved results, we are continuing to pursue 
our final purpose of developing the real-time system that can 
efficiently and continuously monitor patients’ conditions and 
alert them and their carers when hypoglycemia is detected 
nocturnally during sleep. 
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    TABLE II. EEG RESPONSES WHEN BGL = 3.3-3.9 MMOL/L 

EEG 

parameters 
Early Onset(EO) 

Groups comparison p-values 

N-EO EO-H 

C3 

P-� 1.960± 1.464 0.197 0.434 

P-. 1.509 ± 1.062 0.702 0.170 

CF-� 5.632 ± 0.267 0.782 0.615 

CF-. 10.247 ± 0.268  0.904 <0.0001 

SV-� 1.161 ± 0.215 0.307 <0.0001 

SV-. 1.750 ± 0.337 0.076 0.403 

SE-� 0.862 ± 0.033 0.216 0.454 

SE-. 0.868± 0.030  0.038 <0.0001 

O2 

P-� 1.943 ± 0.877 0.417 0.237 

P-. 2.344 ± 0.980 0.856 0.020 

CF-� 5.697 ± 0.261 0.067 0.012 

CF-. 10.112 ± 0.326  0.851 <0.0001 

SV-� 1.176 ± 0.238 0.097 0.615 

SV-. 1.781 ± 0.353 0.745 <0.001 

SE-� 0.858 ± 0.026 0.544 0.954 

SE-. 0.845 ± 0.026 0.068 0.024 

1983
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