
  


 

Abstract—Automatic EEG-processing systems such as 

seizure detection systems are more and more in use to cope 

with the large amount of data that arises from long-term EEG-

monitorings. Since artifacts occur very often during the 

recordings and disturb the EEG-processing, it is crucial for 

these systems to have a good automatic artifact detection. We 

present a novel, computationally inexpensive automatic artifact 

detection system that uses the spatial distribution of the EEG-

signal and the location of the electrodes to detect artifacts on 

electrodes. The algorithm was evaluated by including it into the 

automatic seizure detection system EpiScan and applying it to 

a very large amount of data including a large variety of EEGs 

and artifacts.  
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I. INTRODUCTION 

Electroencephalograms (EEG) enable the analysis of 
brain activity by medical experts. EEG helps in particular to 
diagnose and monitor neurological pathologies such as 
epilepsy. EEG recordings are often contaminated by artifacts, 
which make the EEG less readable for a person or an 
automatic EEG processing system [1]. Artifacts can be 
physiological or non-physiological. Physiological artifacts 
can arise from eye movements or muscle activity. Non-
physiological artifacts may e.g. come from the recording 
equipment, from interference of electric fields or from poor 
electrode contacts. Some of these artifacts are particularly 
disturbing for automatic EEG processing systems, which 
makes automatic artifact detection necessary. Automatic 
seizure detecting systems are particularly affected by artifacts 
that mimic pathological EEG. Most of the artifact detection 
techniques nowadays use thresholding techniques based on 
time-frequency features of the signal. Lower- and higher 
statistical properties of the EEG signal are used, as well as 
adaptive thresholding [2]–[12]. 
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The decomposition of the signal via independent 
component analysis (ICA) [10] or principal component 
analysis (PCA) [13] has proven to be a good way to separate 
the artifact from the normal EEG, but thresholding 
techniques are still needed to detect the artifact within the 
signal component and the techniques are computationally 
expensive. Also it is difficult to detect which electrode the 
artifact is coming from. In order to reduce only certain 
artifactual frequency components of the signal or the signal 
components obtained with ICA and PCA, the wavelet 
decomposition has been used [7], [9], [13]. Classifier 
methods based on support vector machines (SVM) [4] or 
linear discriminant analysis (LDA) [6] were investigated, but 
these methods have the drawback that they require a large 
amount of supervised data for parameter estimation prior to 
online processing. Some types of artifacts such as eye 
movements have been widely analyzed [3], [7] but are not 
the main disturbing artifact in automatic EEG-processing. 
For a seizure detection system it is naturally important to 
recognize artifacts that mimic the pathological EEG. These 
are particularly difficult to detect because their principal 
features do not differ much from the normal EEG. The usual 
thresholding techniques based on time- or frequency features 
do not suffice. It is necessary to take into account the spatial 
distribution of the signal. The signal coming from the brain 
has to match certain physical properties as for example a 
continuous distribution over the skull. Here, we are 
presenting an algorithm that uses the information of the 
location of every electrode in order to detect electrodes with 
artifacts that come from an extra-cerebral source. The way a 
signal should change over the adjacent channels is used as 
well as the location of the electrode and its adjacent 
electrodes. Our algorithm mimics the procedure of a medical 
expert when checking the EEG for an artifact. Using only the 
signals of predefined subsets of  electrodes improves the 
robustness of the algorithm. The system works automatically, 
reliably and is computationally inexpensive. In order to 
evaluate the algorithm, it was included into the epileptic 
seizure detection system EpiScan [8] and applied to 5121h of 
unselected EEG from an epilepsy monitoring unit. It 
improved the seizure detection by reducing the false alarm 
rate by 39% on average, reducing the sensitivity only by 3%. 

II. METHOD 

Our algorithm detects an electrode artifact in the EEG in 
the same way as a medical expert does. In Figure 1 an 
example of an artifact coming from one single electrode is 
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shown in the longitudinal bipolar montage. The artifact is 
easily recognizable because it presents a clear phase reversal 
and the dominant pattern is only seen on two channels 
sharing the affected electrode. The pattern does not repeat 
itself on any other channel, therefore it is surely from an 
extra-cerebral source. In summary, two conditions need to be 
fulfilled to identify an artifact on an electrode: 

1. Phase-reversal on the electrode in a bipolar montage 

2. No repetition of the pattern on adjacent channels 

 
Our algorithm detects an artifact on an electrode by 

checking these two conditions. For this, the EEG-signals of 
other channels are needed, but not all. As can be seen in 
Figure 2, where a zoomed picture of the artifact is shown, 
four adjacent bipolar channels, derived from five electrodes, 
suffice to recognize the signal as an artifact. In order to check 
the first condition (phase-reversal) only the two middle 
channels are needed and the checking of the second condition 
(absence of the pattern on adjacent channels) requires the 
four channels. 

The EEG signals were recorded in the 10-20 system with 
additional epilepsy electrodes.  

A. Definition of electrodes sets 

Since five electrodes suffice to recognize if the electrode 
has an artifact, we define for every electrode i =1..N an 
ordered set    of five neighboring electrodes with the 
electrode i  in the middle: 

        ,                     , with                 (1) 

These sets represent a row of bipolar channels that can 
come from the longitudinal, the transverse or the 
circumferential montage. Figure 3 shows an example for the 
electrode C3. The set of electrodes for C3 is 
{FP1,F3,C3,P3,O1}, the set of bipolar channels is {FP1-F3, 
F3-C3, C3-P3, P3-O1}. 

 

 
Figure 1: Example of artifact, seen in the longitudinal bipolar montage 

 
Figure 2: Zoomed  artifact from Figure 1 

 

 

Figure 3: Representation of  a set of electrodes    in the 10-20 system 

B. Calculation of coefficients 

Each condition is checked by computing a different 
coefficient based on the set of EEG-signals and comparing it 
to a threshold.  

We define       the signal of the electrodes i =1..N. The 
vector    represents the samples of the signal       in a time 

frame of 1 second. 

   (               )                

     are the bipolar vectors resulting from the set   , 

defined in (1). 

             
      

, (         

 

1) First condition: phase-reversal 
The coefficient for this condition compares the EEG-

signals of the two bipolar channels      and      that include 

the possibly affected electrode  . It is applied to the bipolar 

signals      and      which both include the signal of the 

electrode  .    is a derived correlation coefficient that takes 
into account the amplitude of the signals dividing the 
covariance by the sum of the variances. 

       
    

      

    
           

      

 

If this coefficient is low, the two signals have very similar 
pattern and amplitude and opposite phase, matching the first 
condition of the algorithm. 

2) Second condition: no repetition of the pattern 
For the second condition, the coefficient    is computed. It 

is the maximum of the coefficients                

       (         ),  

with 

     ||
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     is the absolute value of the standard correlation 

coefficient. It does not take into account the amplitude, by 
dividing the covariance by the product of the standard 
deviations.      is calculated based on the signals of two 
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bipolar channels. If this coefficient is high, the two signals 
have very similar pattern, regardless of amplitude and phase. 
If it is low, the two signals do not have a similar pattern.      

is calculated with     , that includes the signal coming from 

the electrode   and      that does not.       is based on      that 

includes the signal coming from   and      that does not. 

Hence, if    is low, it means that none of the signals 
coming from the electrode   correlate with the signal of an 
adjacent electrode to  . Thus, the dominant pattern coming 
from   is not found on adjacent electrodes, matching the 
second condition of the algorithm. 

3) Definition of an alternative set of electrodes 
Since sometimes two adjacent electrodes could be 

affected by an artifact, we define for every electrode two 

different sets    
   

,   
   

. For example   
   

 may include a 

series of electrodes from the longitudinal and   
    from the 

transverse montage. The coefficient    is calculated for the 

two sets   
   

 and    
   

. The lower value of    decides which 
set is used in the following to calculate    . 

III. EVALUATION 

The artifact detection algorithm was evaluated by 
applying the EpiScan system and measuring the 
performance with and without artifact detection.  

A. Episcan 

EpiScan [8] is an online seizure detection algorithm for 
long-term EEG monitoring, which is based on the 
frequency-domain Periodic Waveform Analysis (PWA) and 
a time-domain analysis called Epileptiform Wave Sequence 
(EWS).  PWA and EWS detect regular and irregular 
rhythmical EEG patterns. They are followed by an 
adaptation module automatically adjusting the algorithm to 
patient-specific EEG properties, which detect regular and 
irregular rhythmical EEG patterns.  

B. Performance  

The performance of the seizure detection was estimated 
by calculating the average sensitivity and false alarm rate 
over all patients.  For each patient the sensitivity was 
defined as the ratio of the number of correct detections to the 
number of seizures and the false alarm rate was the average 
number of false detections per hour. 

C. Data 

The algorithm was applied to the EEG of 68 patients. All 
68 patients went through a long-time monitoring on an 
epilepsy monitoring unit. Their recording lasted 1 to 8 days, 
on average 4 days, details are found in Table I. The patients 
had all types of diagnoses as can be seen in Table II. Most of 
them had temporal lobe epilepsy for which PWA, EWS and 
the EpiScan system works the best, since they frequently 
present rhythmical patterns. 28 of the patients had recorded 
epileptic seizures. In total 185 seizures were recorded. The 
patients had 1 to 32 seizures during the recordings and on 
average 0.2 to 15 seizures per day. All the 185 seizures 
where marked by trained medical experts.                                                    

TABLE I: RECORDING DURATIONS 

Recording time Number of patients 

< 1  day 6 

< 2 days 12 

< 3 days 11 

< 4  days 30 

< 5  days 8 

< 9  days 1 

TABLE II: DIAGNOSES 

Diagnose Number of patients 

mesial temporal lobe epilepsy 4 

temporal lobe epilepsy 16 

generalized epilepsy 2 

frontal lobe epilepsy 6 

focal epilepsy 14 

undefined 14 

no epilepsy 12 

 

The EEG was unselected, no part of the data was cut out 
prior processing. Thus, all kinds of artifacts have occurred 
during the recording. Only the 50 Hz current hum was 
preprocessed with a notch filter.  

IV. RESULTS AND DISCUSSION 

The artifact detection algorithm highly improved the 
automatic seizure detection system EpiScan by recognizing 
artifacts and therefore reducing the number of false alarms. 
On average, the false alarm rates of the patients were 
reduced by 39% while only 3% for the sensitivity 4 seizures 
were missed that had been detected before. With the artifact 
detection algorithm, EpiScan achieved an average false 
alarm rate of 0.41 FA/h with an average sensitivity of 69%. 
In comparison, EpiScan without the artifact reduction had a 
false alarm rate of 0.67 FA/h and a sensitivity of 72%. 

Figure 4 shows the reductions of the false alarm rates (in 
%) for all patients. The mean reduction over all patients of 
39% is represented by the horizontal dotted line. As can be 
seen in Figure 4, except for 2 datasets were the false alarm 
rate was already below 0.06 FA/h, a reduction of the false 
alarm rate of at least 8% and up to 100% was observed for 
all datasets. One dataset became false alarm free while its 
sensitivity stayed at 80%.  

In Figure 5, a histogram is represented of the number of 
patients versus the false alarm rate. We can observe that 10 
additional datasets dropped to a false alarm rate below 0.25 
FA/h and only 2 datasets had a false alarm rate larger than 1 
FA/h in contrast to 11 before artifact reduction.  

Figure 6 shows a histogram of the number of patients 
versus the sensitivity. Here, we can see that the sensitivities 
of only 3 patients from 28 were affected. In total only 4 
previously detected seizures were missed.  
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Figure 4: Reductions of the false alarm rates (in %)  of  the automatic 

seizure detection system EpiScan with artifact detection. Each vertical bar 

represents the reduction for a single patient. 

 
Figure 5: Histogram of the number of patients vs false alarm rate of  the 

automatic seizure detection system EpiScan with and without artifact 
detection. 

 
Figure 6: Histogram of the number of patients versus sensitivity of  the 

automatic seizure detection system EpiScan with and without artifact 
detection. 

 

 

V. CONCLUSION 

We presented an efficient automatic artifact detection 
system that uses the spatial distribution of the EEG for every 
electrode in order to detect electrodes with artifacts that come 
from an extra-cerebral source. The algorithm was applied to 
a large amount of data including a large variety of EEGs and 
artifacts. The results were used in the automatic seizure 
detection system EpiScan. The artifact detection algorithm 
improved very much the automatic seizure detection system. 
The false alarm rate was reduced by 39% on average from 
0.67 to 0.41 FA/h while the sensitivity was only reduced by 
3% to 69%.  
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