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Abstract — It has been shown that ultrasonic guided waves 

have great potentials for long cortical bone evaluation. However, 

due to the multimodal dispersion, the received signals usually 

contain several mixed guided modes, which highly complicates 

the mode separation and signal processing. In the study, we 

showed that the use of dispersion reversal excitation allows the 

self-compensation of the dispersive modes in the long cortical 

bone. Two-dimension finite-difference time-domain (2D-FDTD) 

method was employed to simulate the propagation of two 

fundamental guided modes, symmetrical S0 and 

anti-symmetrical A0, in the long cortical bones. It was 

demonstrated that the pulse-like modes of S0 and A0 can be 

detected under the dispersion reversal excitations. The 

simulations also illustrated that the proposed dispersion 

reversal method can be used to evaluate the cortical thickness. 

Results are promising for the application of dispersion reversal 

method in ultrasonic assessment of the long cortical bone. 

I. INTRODUCTION 

Due to the aging population, osteoporosis has been gained 
considerable attention. As an elastic wave, ultrasound is 
naturally sensitive to the material biomechanical properties 
and geometry with advantages of low-expense, portability and 
non-radiation [1]. Therefore, researchers have shifted the 
innovative emphasis towards ultrasonic bone evaluation and 
fracture monitoring [2-5]. Long cortical bone is a tubular 
structure and can support the propagation of different kinds of 
waves, for instance surface waves and guided waves [1, 5]. 
Current studies demonstrated that the ultrasonic guided waves 
is capable of assess the cortical thickness, bone fracture, and 
bone mineral density, which can open up promising 
applications [1]. However, in the field of the long bone 
evaluation, guided waves analysis is not as mature as the 
non-destructive evaluation in the industry. Great efforts have 
thus been taken into the signal processing for dispersion 
suppression and mode separation [6-8]. Time reversal method 
has been used to compensate the dispersive influence of 
guided waves and focus the plate defects [9]. Single mode 
tuning technique has also been proposed [10]. Although a 
number of studies have analyzed the applications of time 
reversal in the non-destructive evaluation, it has not been used 
for cortical bone evaluation. The main challenges could be the 
short diaphyseal length, unknown cortical thickness, 
multimodal overlap and also clinical limitation. 
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In this study, we applied the dispersion reversal method for 
long cortical thickness evaluation. The guided propagation 
function was firstly used to generate the theoretical single 
mode signals with wideband dispersion. The single mode 
waveforms (symmetrical S0 and anti-symmetrical A0) were 
then reversed and launched to excite the self-compensated 
pulses. To validate the proposed dispersion reversal method in 
the long cortical bone, two-dimension finite-difference 
time-domain (2D-FDTD) method was applied. Finally, we 
tested the use of dispersion reversal method for assessing long 
cortical bone thicknesses. 

II. METHODS 

A. Theoretical Solutions of Guided Waves in Plates 

Guided waves propagating in a solid plate (or layer) also 
named as Lamb waves, which are vibrations with traction-free 
boundary conditions. Lamb modes can be classified into 
symmetrical and anti-symmetrical systems. For an isotropic 
plate of thickness 2h, the dispersion relation of these modes 
are governed by the Rayleigh-Lamb frequency equations [11]  
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where k is the angular wave-number and numerically equal 

to / pV , pV  is the phase velocity of the Lamb modes, and   

is the angular frequency. The coefficients p and q are given by  
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where LV  and TV  are the longitudinal and shear bulk wave 

velocities, respectively. After the root extraction of the Eq. (1), 
the dispersion curves can be expressed as wave-number k , 

phase velocity pV , or group velocity gV , versus frequency or 

frequency-thickness product. 

B.  Propagation of Dispersive Guided Waves 

The physical mechanism of dispersion has been widely 
analyzed, but here we focus on the views of signal processing 
about the dispersive influence of the excitation. Under the 
assumption that a broadband incident pulse ( )f t  is excited by 
a transmitter, the guided wave signals measured at distance x0 

can be defined by out-of-plane surface displacement ( )g t  as 

[11] 
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where t is the time. The wave-number of the mode of 

interest ( )k   is a function of angular frequency  , and ( )F   
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is the frequency spectrum of the excitation ( )f t . The 
modal propagation, derived as Eq. (3), actually adds a phase 

adjustment term 0( )jk x
e

  to the excitation ( )F  , and from the 
time shift property of Fourier transform, it is known that the 
factor 0( )jk x

e
  will change the time delay of harmonics of 

( )F  . This phenomenon is the so-called dispersion. 

C. Dispersion Reversal of the Single Mode  

Assuming a single mode signal ( )Sg t  is obtained by the Eq. 

(3), the spectrum of the ( )Sg t  is 0( )
( ) ( ) Sjk x

SG F e
  

 . The 

dispersion reversal signal is 0( )Sg t  , where 0  is a time 

constant. As automatic dispersion compensation, the 
dispersion reversal single mode forward propagating in the 
waveguide can gradually regress backward to the original 
pulse. 

III. SIMULATIONS 

A.  Dispersive Signal Generation  

According to the Eq. (3), single modal signals of S0 and 
A0 can be obtained. Material parameters of the cortical bone 
are about density of ρ = 1.5 g/cm

3
, longitudinal wave velocity 

of Vl = 4063 m/s and shear wave velocity of Vt = 1846 m/s [12]. 
The synthesized S0 and A0 signals plate are given in Fig. 1, 
where the cortical thickness is 3 mm, the propagation distance 
is 100 mm. 
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Fig. 1. Synthesized wideband dispersive signals of 3 mm 
thick bone plate, (a) A0 waveforms, (b) A0 time frequency 
representation, (c) and (d) are the waveform and time 

frequency representation of S0. The center frequency is 0.5 
MHz, and -3 dB bandwidth is 0.5 MHz. 

As shown in Fig.1 (a) and (c), the single modal signals of 
S0 and A0 can be theoretically synthesized. The time 
frequency representation of S0 and A0 are calculated by the 
short time Fourier transform in Fig. 1 (b) and (d). The dash and 
dot lines in Fig. 1 (b) and (d) are the theoretical dispersive 
curves of S0, A0, S1 and A1. The time frequency 
representations of the synthesized A0 and S0 are in good 
accordance to the theoretical dispersion curves. To avoid the 
excitation of high-order modes, such as S1 and A1, in the 
simulation analysis, we only discussed in the low frequency 
range (<0.3 MHz). 

B. Dispersion Reversal Simulation 

2D-FDTD was employed for the dispersion reversal 
simulation. Fig. 2 shows the simulation model of a 300 mm 
long cortical layer. For consistency of comparison, the 
distance between the receiver and transmitter was fixed at 100 
mm to imitate the flat diaphyseal region of the long cortical 
bone. The dispersion reversal single modes of S0 and A0 were 
used as the excitations to testify the self-compensation effects. 
Absorbing boundaries were used on the two sides of the 
cortical bone plate to attenuate the wave reflection. The top 
and bottom boundaries were satisfied by the traction-free 
condition. 

Transmitter
   D = 100 mm00  

Receiver

Long Cortical Bone

Absorbing Boundary  

Fig. 2. The simulation model.  

To obtain the symmetrical vibration of S0 Mode, a 
transducer pair was arranged on the two sides of the cortical 
plate with the identical excitation signals. With regard to the 
anti-symmetrical mode A0, only a contact transducer was 
used. 
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Fig. 3. Comparison of the pulse excitation and dispersion 
reversal excitation of the S0 and A0, the cortical thickness is 3 
mm. 

Figure 3 shows the simulated signals under the traditional 
pulse excitation and dispersion reversal excitations of the 

modes S0 and A0. The duration of the pulse excitation is 5 s. 
The center frequency of the A0 and S0 are 0.1 MHz and 0.3 
MHz, respectively. 

The dispersion reversal results of S0 and A0 are plotted by 
blue and red lines, respectively. It can be found that the 
original dispersive excitation, i.e. reversal S0 and A0 modes 
can be self-compensated to the pulse-like signals. Relatively 
weak S0 component can also be detected under the A0 
excitation. As can be found in the reversal A0 excited signals, 
the highly dispersive A0 was focused as a one cycle pulse, and 
two separated S0 and A0 can be identified without modal 
overlap. 

IV. RESULTS 

According to the former simulations, the accurate 
dispersion reversal signals of the certain bone plate can 
achieve a full compensation. The accurate wideband 
dispersion reversal signals can be calculated from the 
dispersion function in Eq. (3) with the correct bone parameters, 
including density, velocity, and cortical thickness. In this 
study, we only analyzed the thickness determination and 
suppose the density and velocity are known. 

A series of dispersion reversal signals were then generated 
with the cortical thickness parameter varying from 1 mm to 6 
mm. As can be seen in Fig. 4, 6 different dispersion reversal 
signals of A0 were obtained. The energy of these 6 signals is 
the same. The center frequency of the signals is 0.1 MHz and 
the bandwidth is of 0.3 MHz. 
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Fig. 4. The different dispersion reversal signals, the 
cortical thicknesses are from 1 mm to 6 mm. 

The dispersion reversal signals were further used to excite 
the A0 mode in the same bone plate with a constant cortical 
thickness of 3 mm. Fig. 5 shows the simulated signals of the 3 
mm bone plate under different dispersion reversal excitations. 

From the top to the bottom, there are the simulated signals 
with cortical thickness parameter varied from 6 mm to 1 mm. 
Although both the S0 and A0 were excited by the singular 
contact transducer, under the excitation of the 3 mm A0 
dispersion reversal signal, the fully-compensated A0 pulse 
was successfully obtained with the strongest pulse energy and 
the shortest duration. 
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Fig. 5. Simulated signals of the 3 mm bone plate. The 
thickness parameter of dispersion reversal signals is varied 
from 1 mm to 6 mm. 

As can be seen in Fig. 5, the A0 pulses were extracted by 
15% threshold of the corresponding signal amplitudes. The 
duration and amplitude of the self-compensated pulse were 
then calculated to describe the signals in Fig. 5. Quantitative 
analysis of the self-compensated pulses with the thickness 
parameter variation are presented in Fig. 6, where the Fig. 6(a) 
and (b) are the durations and amplitudes of the A0 pulses in 
Fig. 5. 
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Fig. 6. Analysis of the self-compensated A0 pulses with 
the thickness parameter variation. (a) Duration, (b) Amplitude, 
c) Normalized ratio of amplitude and duration. 

It can be found that the pulse durations start from 19.79 s 

to 9.0 s and end at 27.8 s. The minimum duration is 

obtained at the 3 mm. Similarly, the amplitudes of the A0 

pulses increase from 1.59 to 2.28, and decrease to 1.90. The 

amplitude maximum is at 3 mm. However, the difference of 

the amplitudes is not as significant as the durations. The 

general trend should be that under the correct 

self-compensation, the amplitude reaches the maximum and 

the pulse duration achieves the minimum. Consequently, a 

combined parameter, amplitude/duration, should be more 

sensitive than the amplitude and duration. Fig. 6(c) shows the 

normalized curve of the ratio of the amplitude and duration, 

the curve peak locates at the 3 mm, which illustrates that the 

cortical thickness can be determined by the 

self-compensation effects of the dispersion reversal signals. 

V. DISCUSSION 

The mathematical models of the dispersion generation, 

reversal and self-compensation were introduced. The 

dispersion function can be used to synthesize the wideband 

single mode signals. These signals can be reversed as 

excitations to stimulate the specific modal pulses in the bone 

plates. Since the strongest pulse energy and shortest pulse 

duration come out by using the correct synthetic parameters, 

the cortical thickness evaluation can be achieved. 

Limited by the clinical application, the traditional contact 

transducers are usually adopted in the long cortical bone 

evaluation. Under the circumstance, the anti-symmetrical 

modes are primarily excited and received. Consequently, we 

mainly investigated the A0 mode excitation and dispersion. 

The simulations of A0 mode suggest that dispersion reversal 

method could be used for long cortical bone thickness 

evaluation.  

However, as can be seen in Fig. 3, the use of contact 

transducer pair allows to only excite the symmetrical mode 

S0, and thus the proposed dispersion reversal method is also 

suitable for the self-compensation of S0.  

As for the long bone evaluation, the soft tissue has high 

influence of the modal excitation, attenuation and velocity, 

which was not considered in the study. The simulations are 

preliminary, and should be more accurate for clinical 

application. 

VI. CONCLUSION 

It is demonstrated in the paper that the synthesized 

dispersion reversal signals can be used to stimulate the 

pulse-like mode components. The 2D-FDTD bone plate 

simulation illustrated that based on the excitation method of 

the single dispersion reversal mode, the S0 and A0 pulse can 

be obtained. The pulse amplitude and duration may be 

sensitive to the cortical thickness. The reported results are 

encouraging to step toward the application of the dispersion 

reversal method in the ultrasonic assessment of long cortical 

bone. Future work will focus on the analysis of the soft tissue 

influence and in vivo experiments.  
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