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Abstract— Muscle spindles are found throughout our skeletal
muscle tissue and continuously provide us with a sense of
our limbs’ position and motion (proprioception). This paper
advances a model for generating artificial muscle spindle signals
for a prosthetic limb, with the aim of one day providing
amputees with a sense of feeling in their artificial limb.
By utilising the Opensim biomechanical modelling package
the relationship between a joint’s angle and the length of
surrounding muscles is estimated for a prosthetic limb. This
is then applied to the established Mileusnic model to determine
the associated muscle spindle firing pattern. This complete
system model is then reduced to allow for a computationally
efficient hardware implementation. This reduction is achieved
with minimal impact on accuracy by selecting key mono-
articular muscles and fitting equations to relate joint angle
to muscle length. Parameter values fitting the Mileusnic model
to human spindles are then proposed and validated against
previously published human neural recordings. Finally, a model
for fusimotor signals is also proposed based on data previously
recorded from reduced animal experiments.

I. INTRODUCTION

Nerve receptors in our muscles, tendons, joints and skin
provide us with a continuous stream of information about
our body’s position, motion and how hard our muscles are
working. This proprioceptive sense is key to enabling us to
move in a smooth coordinated manner, learn new motor skills
and move our limbs without having to visually monitor them.

As it is not one of the main ‘5 senses’, proprioception is
not something we are generally aware of, instead it is a sense
that only becomes conspicuous in its absence. Prosthetic
limb users (e.g. amputees or those with a congenital limb
deficiency) lack proprioceptive or tactile sensation in their
prosthesis and, with the advent of highly dexterous limbs [1]
and improved feed-forward control techniques [2], this lack
of feedback is likely to become an increasingly important
control factor.

This paper develops a model towards creating a proprio-
ceptive neural prosthesis - i.e. a neural implant which would
mimic the function of the human proprioceptive system in
the same way a cochlear implant mimics the function of
the human auditory system. A proprioceptive prosthesis is
envisaged to broadly consist of 3 parts: (1) sensors fitted
to a prosthetic limb to track its position, motion and the
forces exerted on it; (2) processing that translates the sensor
data into neural signal patterns that mimic those produced
by proprioceptive receptors found in the human body; and
(3) an implanted neural stimulator [3] to “transmit” these
artificial neural patterns into the user’s peripheral nervous
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Fig. 1. A proprioceptive prosthesis. Sensors track a prosthetic limb’s
motion, processing translates this into human proprioceptive signals and
a neural stimulator transmits these signals into the user’s nervous system.
This paper focuses on the cross-hatched portions of the full system

system following the natural proprioceptive pathways to the
brain. Fig. 1 shows an outline of the proposed proprioceptive
system and identifies the part this paper will focus on within
the context of the entire system. Specifically, this is to
translate angular sensor data into the firing patterns of the
human muscle spindle.

This paper is from here on organised as follows: Section II
discusses proprioception in the human body; Section III dis-
cusses the methods and details the models used in this paper;
Section IV presents the results and Section V summarises the
findings, outlines areas of future work and provides a brief
discussion on implementation.

II. PROPRIOCEPTION IN THE HUMAN BODY

There are a variety of nerve receptors that contribute to
our proprioceptive sense [4], of these receptors, two stand
out as prime candidates for a proprioceptive prosthesis:
muscle spindles - which are primarily position and motion
sensitive - and Golgi Tendon Organs (GTOs) - which are
primarily force sensitive - (see Fig. 2). These two have been
selected because not only are they major contributors to our
proprioceptive sense and encode all the key proprioceptive
information, but also because they are the best understood
of the proprioceptive receptors. This paper focuses on the
position and motion aspects of proprioception and as such
will model the muscle spindle.
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Fig. 2. Muscle spindles lie in parallel with muscle fibres. Golgi Tendon
Organs lie in series with muscle fibres at the muscle-tendon boundary
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Fig. 3. Simplified muscle spindle operation. A: The muscle is stretched,
the spindle is under tension and fires action potentials on its output. B:
The muscle contracts, the spindle goes slack and stops firing. C: Fusimotor
input contracts the spindle poles, increasing tension in the sensory part of
the spindle and causing it to resume firing.

A. The muscle spindle

Muscle spindles are found throughout mammalian skeletal
muscle. As muscles stretch and contract the spindles within
them stretch or slacken and this modulates the rate at which
they fire action potentials (see Fig. 3 A & B).

Each spindle is generally innervated by two afferent axon
types - primary (type Ia) axons and secondary (type II) axons
- which carry sensory information to the brain; and a number
of efferent axons - including gamma static (γs) and gamma
dynamic (γd) motoneurons - carrying fusimotor signals from
the brain. These fusimotor signals act to contract the spindle
poles and thereby modulate its sensitivity to muscle length
(see Fig. 3 B & C).

III. METHODS

In our modelling a Turtlebot robotic arm (with Dynamixel
AX12 DC servo motors) was used to represent the prosthetic
arm, and all processing was conducted in MATLAB.

At a top level our modelling approach (see Fig. 4) is
similar to that used in the Virtual Arm model [5] and can
be broken down into two main stages: (1) biomechanical
models to estimate muscle length changes as the elbow joint
is flexed or extended, and (2) mathematical models of the
muscle spindle to convert these muscle lengths into estimates
of spindle firing patterns.

Since our target application is a practical, portable, real-
time system to stimulate human neurons, we are inves-
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Fig. 4. The full system model. Functions f(x), g(x) and h(x) are described
in Section III.

tigating several key challenges that have not previously
been addressed. These include: reducing the computational
complexity of the biomechanical modelling; dealing with
noisy sensor data; as well as adjusting the model parameters
to match human (rather than cat) neural firing rates.

In order to obtain a high accuracy model of the spindle
firing this paper also proposes and incorporates models for
the γs and γd fusimotor signals.

A. Joint Angle model (1)

The only input to our system is the angular sensor readings
from the servo motor. These position readings are in integer
format and are updated at approximately 500 Hz and with
0.3◦ resolution. The readings are noisy (which is then
greatly magnified by the spindle model) and as such the
first processing step applies a median filter (window size
7) to mitigate this. The angular position data is then linearly
transformed (function f(x) in Fig. 1) to obtain the joint angle.

B. Muscle length model (2)

There are numerous muscles that span the elbow, however,
it will be impractical for a proprioceptive prosthesis to
provide feedback on all these muscles because of limitations
in (1) sensor data, (2) the number of implants possible and
(3) computational resource.

For a 1 degree of freedom joint (like the elbow), re-
quirements in these 3 areas can be minimised, by selecting
just a pair of mono-articular, antagonistic muscles which are
innervated by the same nerve. Our final prosthesis will also
provide feedback on muscle force and as such we imposed
a further requirement: that the muscles should be powerful
flexors and extensors of the elbow. This led to the selection of
the brachialis (flexor) and the tricep medial head (extensor),
which, although innervated by different nerves, meet all the
other criteria.

The open source Opensim biomechanical modelling soft-
ware [6] has been used to establish the relationship between
muscle fibre lengths and elbow flexion (see Fig. 5). MAT-
LAB line fitting tools were then used, to obtain an empiri-
cally derived model to describe the relationship between their
muscle length and the elbow joint angle.

C. Fusimotor model (3)

Taylor et Al [7] described fusimotor signals as carrying a
‘temporal template’ of the expected movement of a muscle.
It has been proposed that an important role of the fusimotor
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Fig. 5. Opensim predicted changes in normalised muscle fibre length.

signals is to help identify when the body’s movement does
not match the motion intended by the brain (e.g. because
of an obstruction or unexpected resistance). For a first
approximation in describing this behaviour, a downsampled
Proportional Integral controller is included in the fusimotor
model. This aims to predict future motion on the basis of
current motion and as a result creates an element of overshoot
in the event of sudden changes of motion.
γd signals were described in [8] as appearing ‘interrupted’

(by the onset of muscle contraction) and function g(x) models
this using a time delay and a magnitude comparison (see
Fig. 4) to implement the following function:

γd =

{
0 pps if muscle is contracting
100 pps if muscle is static or lengthening

where pps stands for pulses per second. In contrast to this
binary output, function h(x) smoothly modulates the γs
signal between 20 pps and 150 pps (as observed in [7])
according to the equation:

γs = 20 + 130× Lmax − L

Lmax − Lmin

where Lmax and Lmin are the maximum and minimum
normalised lengths of the muscle.

D. Muscle spindle model (4)

The muscle spindle firing patterns are estimated using the
model proposed by Mileusnic et Al [9]. This model has been
parametrised and validated on muscle spindle recordings
from cats published in the literature. Although there are not
believed to be major differences in the way human and cat
muscle spindles work, it has been noted that human muscle
spindle recordings show much lower neural firing rates.

The parameter ‘G’ in the Mileusnic model is the key term
scaling the spindle firing rates and was estimated based on
changes in spindle firing rates of up to 150 pps, that occur
due to fusimotor stimulation in a cat muscle. There is limited
data about the fusimotor sensitivity of human muscle spindle,
but the maximum observed change in spindle output due to
fusimotor signals has been observed to be < 30 pps [10] and
as such we scaled the Mileusnic et Al [9] derived values of
‘G’ by a factor of 1

5 .

IV. RESULTS

A. Human parameter validation

In order to validate our ‘G’ parameter for human spindles,
the output of our model was compared with human spindle
recordings from the extensor carpi radialis brevis (ECRB)
from a paper by Kakuda and Nagaoka in 1998 [11]. Software
was used to estimate the firing rates from the paper and
OpenSim modelled values of normalised ECRB fibre length
were used. The results are shown in Fig. 6 and indicate that
the proposed scaling factor aligns well with the range of
observed spindle firing rates.
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Fig. 6. Top: wrist angle and timing. Middle: modelled vs. recorded human
primary (Ia) muscle spindle output (from Fig. 2 A, B, C of [11]) the shaded
area indicates the range of recorded data. Bottom: modelled and recorded
human secondary (II) muscle spindle output from Fig. 2D of [11].

B. Fusimotor signals and obstructed motion

Prochazka et Al [12] investigated the role of fusimotor sig-
nals in detecting unexpected motion by introducing obstruc-
tions to the movement of a cat’s hindlimb. Fig. 7 compares
the results obtained in that experiment with our modelled
system response. Data points were taken from the paper and
assumptions were made about the experimental cat’s muscle
length to best fit the firing rate. As this experiment is based
on cat spindle firing patterns, the ‘G’ parameter values used
were those given in the Mileusnic paper [9].

C. System data flow

Fig. 8 shows the outputs of each subsequent stage of our
system model (for both the brachialis and triceps medial head
muscles) during a repeated, rapid (∼130 ◦ per second) flexion
and extension of the elbow.

V. DISCUSSION

A proprioceptive neural implant could be of great benefit
to prosthetic limb users and the work presented here is a
first stage in identifying and addressing the signal processing
challenges that remain. Our results indicate that existing
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Fig. 7. Experimentally observed and modelled secondary (II) cat muscle
spindle firing patterns during hindlimb motion (top) with unexpected ob-
structions (indicated by arrows). Experimental results are taken from (Fig.
4A in [12])
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Arrows indicate direction of muscle contraction. Bottom 2 graphs are the
final output of the model

muscle spindle models should be suitable for this applica-
tion, requiring only minor parameter adjustment. Fusimotor
signals are still relatively poorly understood, but have been
repeatedly identified as playing a role in learning new skills,
and we believe the implementation and inclusion of models
of fusimotor dynamics is also an important step for achieving
the benefits offered by a proprioceptive prosthesis.

A. Future work

Areas which will be addressed in future include:
• Integration of muscle force information, which can have

a substantial impact on the spindle output [11], [13].
• Refinement of the Mileusnic model, in terms of param-

eters for human muscle spindles as well as to improve

its stability (in the presence of noise).
• A redesign of the fusimotor model to take input from

motor control signals (rather than motor output) to better
differentiate between intended, passive and obstructed
movements.

B. Implementation

In order to achieve a practical, portable, real time imple-
mentation the model is being ported to a C-language imple-
mentation using a Euler approach to solve the differential
equations in the Mileusnic spindle model. Initial estimates
of the algorithm indicate that it requires between 2 and 4
MIPS per muscle modelled. We therefore believe that the 2
muscle system model proposed here could be run on a low
power 32 bit microcontroller (such as the EFM32 zero) while
consuming under 10mW of power.

ACKNOWLEDGEMENT

This work was supported by the UK EPSRC (DTA award
and Grant ref: EP/I000569/1) and thanks go to Professor
Peter Ellaway for advice and guidance.

REFERENCES

[1] J. Beard, “Darpa revolutionizing prosthetics: Fact sheet,” , 2008.
[2] T. Kuiken, G. Li, B. Lock, R. Lipschutz, L. Miller, K. Stubblefield, and

K. Englehart, “Targeted muscle reinnervation for real-time myoelectric
control of multifunction artificial arms,” JAMA: The Journal of the
American Medical Association, vol. 301, no. 6, pp. 619–628, 2009.

[3] I. Williams and T. G. Constandinou, “An energy-efficient, dynamic
voltage scaling neural stimulator for a proprioceptive prosthesis,”
Biomedical Circuits and Systems, IEEE Transactions on, vol. 7, no. 2,
April 2013.

[4] S. C. Gandevia and D. Burke, “Does the nervous system depend
on kinesthetic information to control natural limb movements?”
Behavioral and Brain Sciences, vol. 15, pp. 614–632, 11 1992.

[5] D. Song, N. Lan, G. Loeb, and J. Gordon, “Model-based sensorimotor
integration for multi-joint control: Development of a virtual arm
model,” Annals of Biomedical Engineering, vol. 36, pp. 1033–1048,
2008.

[6] S. Delp, F. Anderson, A. Arnold, P. Loan, A. Habib, C. John,
E. Guendelman, and D. Thelen, “Opensim: Open-source software to
create and analyze dynamic simulations of movement,” Biomedical
Engineering, IEEE Transactions on, vol. 54, no. 11, pp. 1940 –1950,
nov. 2007.

[7] A. Taylor, R. Durbaba, P. H. Ellaway, and S. Rawlinson, “Static and
dynamic -motor output to ankle flexor muscles during locomotion in
the decerebrate cat,” The Journal of Physiology, vol. 571, no. 3, pp.
711–723, 2006.

[8] A. Taylor, P. H. Ellaway, R. Durbaba, and S. Rawlinson, “Distinctive
patterns of static and dynamic gamma motor activity during
locomotion in the decerebrate cat,” The Journal of Physiology, vol.
529, no. 3, pp. 825–836, 2000.

[9] M. P. Mileusnic, I. E. Brown, N. Lan, and G. E. Loeb, “Mathematical
models of proprioceptors. i. control and transduction in the muscle
spindle,” Journal of Neurophysiology, vol. 96, pp. 1772–1788, 2006.

[10] A. Prochazka and M. Hulliger, “The continuing debate about cns
control of proprioception,” The Journal of Physiology, vol. 513,
no. 2, p. 315, 1998.

[11] N. Kakuda and M. Nagaoka, “Dynamic response of human muscle
spindle afferents to stretch during voluntary contraction,” The Journal
of Physiology, vol. 513, no. 2, pp. 621–628, 1998.

[12] A. Prochazka, J. A. Stephens, and P. Wand, “Muscle spindle discharge
in normal and obstructed movements.” The Journal of Physiology,
vol. 287, no. 1, pp. 57–66, 1979.
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