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Abstract— This paper presents the classification of motor
tasks, using surface electromyography (sEMG) to control a
virtual prosthetic hand for rehabilitation of amputees. Two
types of classifiers are compared: k-Nearest Neighbor (k-NN)
and Bayesian (Discriminant Analysis). Motor tasks are divided
into four groups correlated. The volunteers were people without
amputation and several analyzes of each of the signals were
conducted. The online simulations use the sliding window
technique and for feature extraction RMS (Root Mean Square),
VAR (Variance) and WL (Waveform Length) values were used.
A model is proposed for reclassification using cross-validation
in order to validate the classification, and a visualization in
Sammon Maps is provided in order to observe the separation
of the classes for each set of motor tasks. Finally, the proposed
method can be implemented in a computer interface providing
a visual feedback through an virtual hand prosthetic developed
in Visual C++ and MATLAB commands.

I. INTRODUCTION

sEMG has been the focus of attention of researchers for

many years, and many of these studies on the identification

of the sEMG signal have been carried out [1]. Nowadays,

it can be said that sEMG is the most powerful source of

control signal to develop myoelectric prosthetic arms/hands

[2]. The success of myoelectric control depends greatly on

classification accuracy, and effective feature extraction and

classification methods are crucial to achieve high classifica-

tion performance in pattern recognition [3].

Applications of pattern recognition for myoelectric control

schemes were first introduced in 1960’s-1970’s [4] and ele-

mentary pattern recognition technique such as linear discrim-

inant analysis was used for the identification of sEMG signals

[5], [6]. However, due to limited acquisition instruments

and computing capacity at that time, real-time control was

not feasible. A literature review is available in [7], and

parameters like accuracy, number of electrodes, classifier and

features were evaluated. The number of electrodes was taken

as reference in order to perform comparative analysis. Fifteen

kinds of hand motions are identified using four channel of

sEMG signals on the forearm, and using feature temporal to

control a prosthetic hand.

In our work, in order to analyze the sEMG signals with

nonstationary properties, we first make use of sliding win-

dows. Subsequently, we extract three features: RMS, VAR

and WL of each window. Then, the features are subjected
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to cross-validation process with the aim of creating random

partitions and then process them through the developed

classifiers (Bayesian and k-NN), and finally to analyze

the performance. Results showed a margin around 98% of

accuracy in some cases, which represents a high success rate

according to the literature. According to the average results

for the case of the Bayesian classifier was obtained 94% and

for the k-NN about 95%.

A. Previous work

This work is based on our previous works [8], [9], which

deals with a methodology of procedures protocol for acquisi-

tion of sEMG signal in different types of tasks. Fig. 1 shows

the steps of the experimental evaluation of the Bayesian –

k-NN based classification system here developed.
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Fig. 1. Steps of the experimental evaluation of the Bayesian – k-NN based
classification system.

We try to recognize fifteen kinds of hand motion, separated

into four groups: Set 1 (Flexion of single fingers), Set 2

(Flexion of combinated fingers), Set 3 (Wrist actions), and

Set 4 (Combined fingers); all with reference to the rest

position or Class 1. Table I shows these motor tasks, and

Fig. 2 shows the tasks.

B. sEMG Acquisition

Data were captured with an sEMG signal acquisition

system connected to a laptop (Core 2 duo, 2 GHz, 3 GB

RAM) with battery. The sEMG signals produced by the

contraction of muscles are presented to the inputs of an

Instrumentation (differential) amplifier with high CMRR.

The acquisition system uses an active surface electrodes

(Touch Bionics), and the output signals pass through a notch

filter at 60Hz to attenuate mains-born interferences. The

output signals then pass through a bandpass filter with a

3db cut-off set @ 500 Hz.
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Fig. 2. Motor tasks performed by the subject.

The sEMG signals were digitized by an ADC board (NI

USB-6009 of National Instruments), and the sampling fre-

quency was 1000 Hz. The signal acquisition circuit has two

LM358N ICs, each of them has two operational amplifiers

for four channels. In this stage, cut off of the low pass

filter is 309 Hz and 5 Hz for the high pass filter. The

digitized sEMG signals are then processed to get features

for the pattern recognition. We use four surface electrodes to

measure sEMG signals, CH1: Flexor pollicis longus muscle,

CH2: Flexor digitorum superficialis muscle, CH3: Flexor

carpi radial and ulnaris muscle; CH4: Extensor carpi radial

and ulnaris muscle, which are the muscles related to hand

motions (Fig. 3).

II. FEATURE EXTRACTION

The first step in the analysis of the data was to compute the

following features of sEMG signals that have been proposed

by the literature: Root Mean Square (RMS), Variance (VAR),

Waveform Lenght (WL).

TABLE I

SETS OF MOTOR TASKS.

Set Class Task Motion

Class 1 Absolutely relaxed
Class 2 Little finger movement

Set 1 Class 3 Ring Finger movement
Class 4 Middle Finger movement
Class 5 Index finger movement
Class 6 Thumb finger movement

Class 7 Little and Ring fingers movement together
Set 2 Class 8 Ring and middle fingers movement together

Class 9 Index and Middle fingers movement together
Class10 Little and Index fingers movement together

Class 1 Absolutely relaxed
Set 3 Class11 Wrist flexion

Class12 Wrist extension

Class 1 Absolutely relaxed
Set 4 Class13 All fingers movement

Class14 Hand grasp
Class15 Pinch grip
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Fig. 3. Real position of the electrodes and transradial cutting of the muscles
involved.

III. EXPERIMENTAL RESULTS

Four subject participated to the experiments, carrying out

motor tasks in three different days, with fifteen hand motions

including relaxation for a period of about ten seconds. The

mean age of the subjects is 29 years old; three volunteers

are right-handed (Subject 1, Subject 2, Subject 3) and the

last subject is a left-handed person (Subject 4).

A fifth volunteer (Subject 5) was evaluated, which carried

out ten days of testing motor performing the same tasks,

being a right-handed person. All volunteers were male. Data

were analyzed using independent classifiers and classifying

according to the following sets of tasks: Flexion of single

fingers (Set 1), Flexion of single fingers and Flexion of

combinated fingers (Set 1 and Set 2, i.e. Set 1-2), Wrist

actions (Set 3), and Combined fingers (Set 4).

The cross-validation strategy used in this work involves

splitting a set of samples that can be analyzed in two

disjoint sets of data. The most common way of applying the

technique of cross-validation is to leave 10% of the samples

for the evaluation and train the remaining 90%. When the

set of samples is separated into blocks and the number of

these is 10, a 10-fold cross-validation is determined. Cross-

Validation is a technique considered reliable which provides

results in real time [10]. The pattern repeats ten times the

training process and the resulting success rate is used as a

measure of goodness of the algorithm evaluated [11].

We used two variants of the Bayesian classifier to analyze

the data: Linear and Quadratic, obtaining the best results in

most cases with the quadratic type, as shown in Table II.

Table II show the accuracy for classifiers Bayesian and k-

NN.

According to the results, wrist actions (in Linear and

Quadratic Bayesian) provide a very good separability which

can be also, observed in the Sammon Map as shown in Figure

5-8.

For the case of k-NN classifier, a cross-validation process

compares it to thirty Nearest Neighbors specifying a Eu-

clidean distance, following the rule ”nearest” (majority rule

with nearest point tie-break).
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(a) First set (Set 1) of motor tasks. (b) First (Set 1) and second (Set 2) set, i.e. (Set 1-2), of motor tasks.

(c) Third set (Set 3) of motor tasks. (d) Fourth set (Set 4) of motor tasks.

Fig. 4. Grouped scatter plot of Linear Bayesian classificacion.

After analyzing with different number of k-folds obtained

a slight improvement in the classification for the case of k =

10, i.e, 10-fold, as was proposed in the hypothesis approach

for classification.

IV. VIRTUAL HAND MODELING

The virtual hand was designed using free development

tools, such as software development and DirectX Blender.

Blender is used as modeling tool and has features animation

set to the movement of the object model in 3-dimensions and

relationship between each joint. The model is composed of

various objects with a parent-child relationship where one or

more child objects can move independently with restrictions.

The encoding of the virtual hand was developed in C ++ in

100 frames per second (fps), fully adjustable.

Human joints have a particular set of movements. In the

system of virtual hand, the number of joints defined in

relation to the number of angles of the object, and 18 (six

Objects: palm, thumb, index finger, middle finger, ring finger

and little finger; multiplied by three angles). It is possible to

move independently each finger and also the structure of the

palm. For example, the thumb can rotate separately, without

the wrist joint, however, if the palm rotates the wrist joint,

the thumb must rotate with it.

The online system was developed using two channels

for handling the tasks of pronation and supination (CH3

and CH4) but using all steps before commented on the

development platform. The control panel of the online system

is shown in Figure 5.

Two tasks were developed to try to model the human

motion to close or open a hand. Tests were performed for

approximately 60 seconds and with a sampling rate of 200

ms.

Figure 6 shows a volunteer participant moving the virtual

hand with the developed system.

V. CONCLUSIONS AND FUTURE WORKS

It is possible to see that in the classification of the Set

1-2, the accuracy rate decreases in both classifiers, due to

the fact that similar tasks contain another group of classes,
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TABLE II

ACCURACY RATE OF CLASSIFIERS VS DIFFERENT SETS OF MOTOR

TASKS.

Set Accuracy% Accuracy%
Tasks Bayesian k-NN

Subjects Linear Quadratic Average

Subject 1 Set 1 93.01 99.37 96.52
Set 1-2 77.98 98.42 91.80
Set 3 100 100 100
Set 4 100 100 99.62

Subject 2 Set 1 84.26 97.88 90.71
Set 1-2 77.42 98.68 88.15
Set 3 100 100 99.85
Set 4 100 99.58 99.34

Subject 3 Set 1 84.60 97 91.04
Set 1-2 82.69 94.51 89.73
Set 3 100 100 99.90
Set 4 97.03 98.96 96.75

Subject 4 Set 1 82.50 97.17 91.65
Set 1-2 79.12 96.36 88.10
Set 3 100 100 99.97
Set 4 100 100 98.32

Subject 5 Set 1 73.82 94.46 94.73
Set 1-2 51.06 82.19 89.19
Set 3 99.82 100 100
Set 4 90.26 98.59 96.11

Fig. 5. (a) Control Panel System Online: (b) Virtual hand in the open
position; (c) Virtual hand position relaxation; (d) Virtual hand in the closed
position.

nevertheless we obtain hit rates of over 98% as is the case

of quadratic Bayesian classifier. The wrist movement tasks

have scored best hits coming in both cases a 100% of hit

rate and high separability in the diagrams Sammon Maps.

The lowest success rate was obtained in recognition of

the ten motor tasks (Set 1 and Set 2) in the case of Linear

Bayesian classifier (51.06%) as show in Table II.

According to the results of classification performance,

analyzing the sensitivity and sensitivity, it is concluded that

the best classifier is the Bayesian quadratic type.

In the case of the implementation of the online system,

Fig. 6. A voluntary controlling a virtual hand.

it provided high response speed (200 ms) for changes in

hand movements. With the development of this work, it

was possible to obtain a biofeedback tool for an amputee

which has the ability to get around according to a preset and

adaptable system here proposed.
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