
 

 

 

 

 

 

 

 

 

 

  

    Abstract- We developed a low power kinematic sensor, 

ActimedARM, incorporating three-axis accelerometer and 

magnetometer, a microcontroller ARM3, a ZigBee wireless 

communication and µSD memory storage. With embedded 

algorithms it can detect in real time the postures of the subject. 

A preliminary assessment conducted on 12 subjects reached a 

97% correct classification rate. The device exhibits 32 days of 

autonomy on a 3600 mAh capacity battery, which makes it 

convenient for field experiments in true daily life.  

 
 Index Terms—Inertial sensors, actimetry monitoring,  

Embedded systems, autonomous systems.  

I. INTRODUCTION 

aily activity of the subject is mainly imposed by vital 

needs (sleep, feeding, elimination, etc.) but are also 

influenced by interactions with environment (e.g. to 

move in and out home, etc.). It is therefore both a measure of 

the vitality of the subject and an image of its homeostasis. 

But to extract the long term features of this activity, it needs 

to monitor on the field, in unsupervised protocols and for 

long periods (several days to a few months). 

The actimetry is the chronological record of postures (sitting, 

lying, standing, walking) successively adopted by a subject 

over a period of time to determine its intrinsic and personal 

characteristics [1]. This record occurs usually within a 

movement laboratory with heavy and expensive equipments, 

following a protocol lasting a few minutes to a few hours. 

Recent advances in microelectronics and MEMS 

technologies, now made available integrated inertial sensors 

(accelerometers, gyroscopes, magnetometers), built-in high 

capacity memories (Flash Eprom) and powerful 

microcontrollers that enable to develop very integrated 

inertial systems, with connectivity and high autonomy [2] 

[3]. These devices can be easily embedded on the subject to 

follow without interfering in his life daily [4] [5]. There is a 

large availability of such devices, with a new problem arising 

with the management of large amount of data produced by 

these devices which requires large storage or transmission of 

data and therefore limits the duration of use to a few days, or 

 
Manuscript received Feb 4, 2013. 

N.Noury is Full Professor at University of Lyon, lab. the Institute of 

Nanotechnologies of  Lyon, INL-INSA Lyon, F69621 Villeurbanne, France  

(Norbert.noury@ insa-lyon.fr). 

even only a few hours, which is not exploitable in field 

situations. 

We developed our inertial, namely ActimedARM, with the 

goal of mastering the operating time, by adjusting the energy 

budget. Some of the algorithms are embedded, to reduce the 

flow of data transmitted, or recorded, and it adapts the speed 

of calculations so to extend the lower energy sleep times.  

II. MATERIAL AND METHODS 

A. Material 

The ActimedARM is based on a 32-bit ARM 

microcontroller, a three-axis accelerometer, a three-axis 

magnetometer, a wireless 802.15.4 module and a µSD Flash 

memory card. It is powered by a 3.6 Volts lithium battery 

followed by a 3.3 volt regulator (Fig.1). 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1: Bloc diagram of the ActimedARM. 

 

The STM32F103RE microcontroller 

(STMicroelectronics) was selected for its computational 

power (core 32-bit cortex M3), its on-board memory (Flash 

512 KB, 64 KB RAM), its low supply voltage (3.6 V), 

integrated peripherals (SPI, USART, ADC, RTC, µSD-card 

driver) and its low consumption in operation (28mA@48 

MHz) and extremely low in standby mode (25µA) making it 

a component of choice when designing powerful embedded 

autonomous electronic systems. 
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Figure 2: The ActimedARM hardware (front side on the 

left and rear side on the right).  

 

The 802.15.4 wireless link (ZigBee), is supported by an 

additional module (XBee, MaxStream) communicating in 

serial asynchronous connection (Fig.2). It allows a flow rate 

of 250 Kbps and a range of 30 meters indoors. Its energy 

consumption is moderate (50 mA) but can be reduced in 

sleep mode (10µA) simply by switching the State of a PIN. 

 

The µ-SD removable memory card (Fig.3) was chosen 

because it offers a large storage capacity in a reduced format. 

In addition, the STM32F103RE microcontroller has a 

hardware interface and Firmware dedicated to the 

management of the µ-SD. 

 

 
Figure 3: The µ-SD Flash memory card 

 

The three-axis digital-output accelerometer (ADXL345, 

Analog Devices) is a stand-alone acquisition system, 

requiring no external component, which communicates on a 

simple SPI bus. It has a wide and adjustable measuring range 

(± 2 g to ±16g) for a fixed resolution of 10 bits. Above all, it 

works at very low voltage (2 - 3.6 V) and its consumption is 

reduced (65µA@25Hz). Thanks to the integrated internal 

buffer (32 samples) the microcontroller may access data only 

once per second (@ 25 Hz), thus remaining in standby mode 

most of the time. 

The three-axis magnetometer (HMC1043, HoneyWell) 

integrates magneto-resistors, whose impedances vary linearly 

with the magnetic field (1 mV/V/Gauss). The HMC1043 

requires the implementation of a Wheatstone Bridge type 

(Fig.4) circuit followed by a differential amplifier and 

analog-to-digital converter. The large initial bandwidth (5 

MHz) is further reduced due to the high amplification factor 

(gain 60 dB). As a significant current supply is needed (30 

mA) it requires adoption of a standby strategy. 

1
0
0
0
 R

 
Figure 4: Conditioning Circuit (per axis) of the magnetometer. 

 

The magneto resistors have a drift in time thus, to prevent 

their saturation, we implemented a reset circuit producing a 

pulse of current (Fig.5). 
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Figure 5: The Reset circuit of the magnetometer. 

 

B. Practical Implementation 

The final device was made with surface components 

mounted on FR4 PCB double sided in class 5. It has a 

volume of 10 cm3 (28 x 30 x 12 mm) without the battery. 

For the sake of acceptability (comfort and discretion), we 

opted for the placement of a single sensor. It is held in 

position in a Pocket sewn onto a T-shirt (Fig.6). The location 

on the bust was selected because this part of the body better 

represents the global postures of the body, unlike the distal 

segments which have free movements (i.e. bracelets placed 

on the wrist, thigh or head).The X-axis of the accelerometer 

corresponds to the anteroposterior (AP) rear axis, Y-axis is 

the vertical down axis and the Z-axis is mediolateral (ML) to 

the right. For the magnetometer, the X-axis corresponds to 
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the AP axis forward, the Y-axis is the vertical upwards axis 

and the Z-axis is the ML axis to the right. 

 

Figure 6: Placement of the ActimedARM sensor on the body. 

C. Embedded Algorithms 

The main program loop is executed once per seconds to 

collect one magnetic field measure (1 Hz) and the last 25 

samples from the buffer of accelerations (25 Hz). 

It first switches on the magnetometer, collects the 

samples of data of both 3 axis magnetic and accelerations. It 

then switches off the magnetometer, low pass filters the data 

and performs all the processing on filtered signals to 

compute the posture (lying, sitting, standing, walking, 

transfer). Eventually, depending on the configurations 

parameters, it stores the raw data and/or send the new 

posture if it changed during the past second. After 

completion it returns to the standby low power mode. 

1) Detection of the body orientation 

The orientation of body is computed from the 

trigonometric functions applied on the magnitude of the 

vertical acceleration. When the subject is standing, the 

vertical acceleration is maximum, denoting a 90 degree angle 

above horizontal plane (90°=arcsinus(1)), whereas when 

lying it is minimum (0°=arcsinus(0)).  

 

 

 

 

 

 

 
 

 

 

Figure 7: The posture is classified on the value of arcsinus of 

vertical acceleration value: standing for interval [1-0.98], 

bending in [0.97-0.18] and lying in [0.17-0].  

 

2) Detection of transfers 

The stand-to-lying and lying-to-stand transfers are simply 

detected when the posture changes from standing to lying 

and lying to standing. 

As the orientation of the body are very similar in standing 

and sitting postures, we determine the sit-to-stand and stand-

to-sit with our former algorithm [5] which uses the phase 

shift between vertical and horizontal accelerations signals 

which occurs during this transfer. 

3) Detection of the walking posture 

The detection of the walk is done via a spectral analysis of 

the vertical acceleration signal: walking is punctuated by the 

foot impacts and therefore looks like a pseudo periodic 

movement. We will therefore find a peak in the frequency 

spectrum of the vertical acceleration in the range 1.1 Hz - 5.4 

Hz. This spectral analysis is performed with a fast Fourier 

transform on the last 64 samples (Fig.8), which provides a 

good compromise between computing time and frequency 

resolution. At a 25 Hz sampling rate, the frequency 

resolution is 0.39 Hz. 

 

 
Figure 8: The (64 samples) short time FFT on vertical 

acceleration signal during walking. 

 

We consider there is walking in a time window if the 

amplitude of the central frequency is higher than twice the 

maximum minus the following 2 subsequent maximums. 

This takes into account both the amplitude and slope of the 

maximum. 

4) Detection of change in direction 

The change in orientation mainly occurs while standing 

(walking) and thus it cannot be detected with the 

accelerometers which are projected on the vertical axis. We 

therefore implemented a three-axis magnetometer which 

brings additional information on the orientation relative to 

the North magnetic.  

STANDING 

STANDING 

 LYING LEFT    LYING RIGHT     LYING BACK     LYING FRONT    

 BENDING FRONT     BENDING BACK    
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III. RESULTS 

A. Measured autonomy 

Instantaneous consumptions are visualized on a shunt 

precision resistor (1 Ω) placed in series on the ground 

circuit. This allows observing the consumption profile on the 

oscilloscope (Fig.9).  

 

Figure 10: The profile of current supplied during a data 

acquisition cycle (left) followed by a storage cycle (right). 

 

In a mode with periodic storage on the µSD, we measure an 

average consumption of 3.24 mA during data acquisition 

cycles and 7.11 mA during the writing. As 64% of the time is 

spent in first stage (3.24 mA) and 36% in second stage (7.11 

mA), the average consumption is 4.64 mAh and the daily 

consumption is therefore estimated to 111.4 mAh. This 

anticipates autonomy larger than 32 days on a 3600 mAh 

battery  (LS17500) or 10 days on a 1200 mAh (ER14250W).  

In a mode with periodic data transmission, we observe a 

80mA peak consumption when data transmission and 6.25 

mA mean consumption during normal cycle. The daily 

consumption thus reaches 150 mAh which reduces autonomy 

to 24 days (3600 mAh) or 8 days (1200 mAh). 

B. Performances 

Our test Protocol involved 12 healthy subjects (25 ± 3.6 

years), performing the following successive movements: 

• 5 sit-to-stand, separated by 3 seconds 

• 2 round trips on 10 meters at comfortable speed 

• 1 return full speed 

• 1 return slow speed 

• 5 lying-to-standing, separated by 3 seconds 

The sequences were performed under the control of a 

reference video for indexations of situations and for counting 

classified events (True Positives-TP, False Positives-FP, 

True Negatives-TN, and False Negatives-FN).  

The performances were then evaluated considering the 

rate of situations correctly classified (sensitivity=TP/TP+FN) 

and misclassified situations (specificity=TN/TN+FP). 

Most transfers were correctly detected with a rate of correct 

classification of 97%, thus the transfers were correctly 

identified. All the walking periods were detected, with a 

delay of 2 seconds due to our 1 second temporal window. 

IV. CONCLUSION 

We developed our inertial sensor, ActimedARM, 

incorporating an accelerometer and a magnetometer, an 

ARM3 microcontroller, a ZigBee wireless communication 

and µSD memory storage. The device exhibits 32 days 

autonomy on a 3600 mAh capacity battery, which allows 

measures in environmental campaigns on the field. 

Embedded algorithms allow us to detect in real time the 

postures of the subject, thus reducing the amount of data 

stored and/or transferred. A preliminary assessment 

conducted on 12 healthy subjects demonstrated a 97% rate of 

correct classification. 

REFERENCES 

[1] Meijer GAL, Westerterp KR, Verhoeven FMH, Koper HBM, Ten 

Hoor F. Methods to assess physical activity with special reference to 

motion sensors and accelerometers, IEEE-TBME. 1991;38:221-229. 

[2] Bouten C et al. A triaxial accelerometer and portable data processing 

unit for the assessment of daily physical activity. IEEE-

TBME.1997;44(3):136-47. 

[3] Mathie MJ, Coster AC, Lovell NH. Accelerometry: providing an 

integrated, practical method for longterm, ambulatory monitoring of 

human movement. Physiol Meas.2004;25(2):R1-20. 

[4] Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert 

P. Ambulatory system for human motion analysis using a kinematic 

sensor: monitoring of daily physical activity in the elderly. IEEE-

TBME.2003;50(6): 711-723 

[5] Barralon P, Noury N, Vuillerme N. High level information extracted 

from a kinematic sensor to monitor physical activity. In IEEE-EMBC, 

Shanghai, (2005):1703-6. 

[6] Fleury A, Noury N, Vacher M, A wavelet-based pattern recognition 

algorithm to classify postural transistions in humans. In proc. 

EUSIPCO’09, Glasgow (2009): 2047-51 

 

 

1854


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

