
  

 

Abstract—In order to design a microfluidic device that can 

produce monodispersed encapsulated enzymes as droplets, it is 

essential to be able to evaluate the system during its 

development. An automated method to determine the size of 

the droplets as well as a method to tag and track droplets as 

they move in the system is desirable for system evaluation. We 

apply the Hough transform for circles to determine droplet 

size. Most of the droplets in the images are detected, and the 

best results are obtained at 20x magnification. We also test the 

ability of the ImageJ ‘particle tracker’ plugin to determine the 

behaviour of the droplets as they move in microfluidic systems. 

It is effective in tracking droplets that travel less than 50 pixels 

between frames. 

I. INTRODUCTION 

Microfluidics, which emerged in the 1980s, is the 
manipulation of fluids flowing through channels with 
dimensions as small as tens to hundreds of micrometers. 
Microfluidic systems use very small amounts of samples and 
reagents, are of low cost, have a low analysis time and can 
perform separations and detections with high resolution and 
sensitivity [1]. Another advantage of microfluidics is the 
manipulation of multiphase flows which enables the 
generation and manipulation of droplets within the system. 
This characteristic of microfluidics allows for the generation 
of encapsulated enzymes within the system as droplets. 
Encapsulated enzymes are used in bioreactors to remove 
waste metabolites and to correct inborn metabolic 
deficiencies [2] [3]. 

Imaging has been used to analyse microfluidics systems 
for applications ranging from blood type determination [4] to 
the investigation of samples of tissues and cells [5]. Image 
analysis of droplets provides important information, such as 
droplet size, used to generate usable encapsulated enzymes. 
We apply the Hough transform for circles to this end. 

When designing a microfluidic system to produce droplets, 
it is very useful to understand the behaviour of the droplets as 
they move through different parts of the system and how their 
characteristics change when parameters such as fluid flow 
rate is varied. We test the ability of an image analysis method 
to accurately determine the behaviour of the droplets in 
microfluidic systems.  
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II. METHODS 

A. Materials and Image Acquisition 

The study made use of images obtained from experiments 
conducted by the CSIR in Pretoria on microfluidic systems. 
The experiments involved the formation of droplets and 
examination of their movement within the channels of the 
systems. The microfluidic systems were designed and 
manufactured by the Materials Science and Manufacturing 
Department of the CSIR. Liquids pumped through the 
microfluidic systems resulted in droplet formation. The 
microchip was placed under an Olympus CKX41 
microscope. Images and video were captured using a Casio 
EX-F1 digital camera mounted on the microscope. The 
images were calibrated using the known geometries of the 
microfluidic systems determined in the design phase of the 
fabrication. For a 20x magnification image, 273 pixels were 
equal to 50μm. Images were captured of droplets in 
microfluidic systems at three magnifications (4x, 10x and 
20x) for droplet size determination. Video footage of droplets 
moving through various microfluidic systems at different 
flow rates was captured at 10x magnification for droplet 
tracking. All image processing was done using ImageJ. 

B. Droplet Size Determination 

The Hough transform for circles was applied because of 

the circular nature of the droplets. The images were pre-

processed using a Sobel edge detector to highlight changes 

in pixel intensity. Vertical and horizontal derivatives are 

generated from two 3 × 3 convolution kernels. The final 

image is given by combining the derivatives, using the 

square root of the sum of the squares. The images were 

converted to binary by analyzing the histogram of the image 

and setting an automatic threshold level. A test threshold 

(mean image intensity) is taken and the pixels at or below 

the threshold are assigned to the background class and those 

above are assigned to the foreground (object) class. The four 

corner pixels of the image are assumed to be background. 

The average of the foreground and background pixels is 

calculated, the threshold is incremented to the mean of the 

two class means and the process is repeated. The threshold is 

found when  

 
                                                  

 

The Hough transform [7] is a technique used to find 

curves in images and can be extended to find circles by 

replacing the equation of a curve with the equation of a 

circle in the detection process. It tolerates noise and 

occlusion. The Hough transform uses an array, called an 

accumulator, to detect the existence of a curve. The 

dimension of the accumulator is equal to the number of 
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unknown parameters. A circle with radius R and centre (a,b) 

can be described by the following parametric equations: 

 
            

            

 

The transform finds the parameters (a,b,R) to describe 

circles in the image. The Sobel gradient calculates the 

gradient of image intensity at each point in the image. The 

result will show the likelihood of any point in an image 

representing an edge, and its likely orientation.  If an edge is 

detected, the parameters of the edge will be calculated and 

the value of the accumulator cell in which the parameters 

fall will be incremented. The cells with the highest values 

indicate the most likely lines or circles.  

C. Tracking of droplets 

The tagging and tracking of droplets provides information 

to evaluate the design of microfluidic systems. The 

information may be used to determine the behaviour of the 

droplets as they move through different parts of the system 

and to determine how this behaviour changes as the flow 

rates of the fluids are varied. The tracking method, namely 

the ‘particle tracker’ plugin in ImageJ, is based on a feature 

point tracking algorithm [6]. In the case of this study the 

feature points were the bright drops and the neighbourhood 

was the dark background. The tracking process does not 

require previous mathematical modelling of the motion; it 

self-initialises, it can handle temporary occlusions and 

droplet appearance and disappearance from the image. 

 

The image stacks were pre-processed with a median filter 

to reduce the noise in each frame and Gaussian blur to 

smooth each frame. A sharpening filter, consisting of spatial 

convolution with a kernel was applied to sharpen the edges 

of the droplets in each frame after application of the 

Gaussian blur. The Otsu method [8] was used for 

thresholding. It assumes the image contains only foreground 

and background pixels and then separates the foreground 

pixels from the background pixels to minimize their intra-

class variance.  

 

The ‘analyze particle’ command in ImageJ was used to 

select the droplets in each frame as regions of interest and 

separate them from the rest of the image. The ‘analyze 

particle’ command counts and measures objects in binary or 

thresholded images. It scans the image until it finds the edge 

of an object, outlines the object and then fills it, and then 

moves on to find the edge of a new object. The size (area) 

range of particles of interest can be specified and particles 

outside this range are ignored. This is particularly useful if it 

is not possible to eliminate all noise and artifacts during pre-

processing. If all the particles of interest fall into a certain 

circularity range as with the images in this study, the 

circularity can be set to a certain range to eliminate the 

measurement of features which are not particles. The ‘wand 

tool’ in ImageJ is used in the ‘analyze particles’ plugin to 

outline objects. It selects thresholded pixels forming a 

continuous area by tracing an edge until it returns to the 

starting point to create a selection. The ‘measure’ command 

in ImageJ used in the ‘analyze particles’ plugin is used to 

obtain area and shape descriptors - the plugin measures the 

area of the particles as well as their circularity and 

roundness. The roundness is calculated by: 

 

             
      

               
 

 

The circularity, which ranges from 0 (infinitely elongated 

polygon) to 1 (perfect circle), is calculated by: 

 

                 
      

            
 

 

The area and shape descriptors of the droplets provide a 

filter parameter to eliminate features which are not droplets 

so that only droplets remain as regions of interest. The 

regions of interest –droplets- are then converted to masks. 

The tagging and tracking of droplets was achieved by using 

the ‘particle tracker’ plugin in ImageJ [6]. The algorithm 

consists of two parts: feature point detection and trajectory 

linking. The first part of the algorithm detects feature points 

in every frame of the video footage so that they can be 

linked in to trajectories later on. The feature point detection 

consists of the following four steps: 

 

 Image restoration 

 Estimation of point locations 

 Refinement of point locations 

 Non-particle discrimination 

 

In the image restoration step the image is corrected for 

imperfections. Two different effects are accounted for 

during this step. The first is long wavelength modulations of 

the background intensity caused by non-uniform sensitivity 

among the camera pixels or uneven illumination. This is 

corrected for by assuming the feature points are small 

compared to the background variations. The second is 

discretization noise from the digital camera. The 

discretization noise from the camera is modelled uniformly 

Gaussian with a correlation length of λn = 1 pixel. The 

correlation length gives a measure of the range in which 

fluctuations in one area of the image influence those in 

another area. Estimating the feature point locations is 

achieved by finding the local intensity maxima in the filtered 

image that has been restored. The refinement of the point 

locations will reduce the standard deviation of the measured 

positions of the feature points. The non-particle 

discrimination part of the feature point detection is used to 

discard spurious detections which can be dust or particle 

aggregates.   

 

In the second part of the algorithm, a linking algorithm 

finds points that correspond to the same particle in 

succeeding frames and links the particle positions into 

trajectories. The feature point detection algorithm is applied 

to each frame to produce a matrix for each frame containing 

the location of the points detected. The number of matrices 

produced is equal to the number of frames in the video. 
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Trajectories are formed by finding a set of relations between 

the locations of the points in succeeding frames so that a cost 

function is minimized. The algorithm is extended to consider 

several frames in each linking step to make provision for 

particle occlusion. 

The aim of this part of the study was to tag and track 

droplets as they move in microfluidic systems. The first part 

of the ‘particle tracker’ algorithm detects feature points in 

each frame of the video, namely droplets. The user defined 

parameters for detection are: radius, cutoff and percentile. 

The radius parameter is the approximate radius of the 

droplets in the images given in pixel units. This parameter 

was chosen as slightly larger than the average droplet radius 

but smaller than the smallest inter-droplet separation. The 

cutoff parameter is a score for non-droplet discrimination 

[5]. The percentile parameter determines which bright pixels 

are accepted as droplets. All local maxima in the upper rth 

percentile of the image intensity distribution are potential 

droplets. These three parameters are used to detect droplets 

in each frame. All the video sequences contain droplets of 

similar size and are recorded at the same magnification. 

Therefore a radius of 8 pixels, a cutoff of 0 and a percentile 

of 0.1 were used for the droplet detection in this study. 

 

The user defined parameters for trajectory linking are: 

displacement and link range. The displacement parameter is 

the maximum number of pixels that a droplet is allowed to 

move between two successive frames. The link range is the 

number of frames that is considered to determine the best 

possible association between droplets in succeeding frames. 

The link range is determined by first tracking the droplets 

with a default link range of 2. After viewing the results, the 

link range is adjusted to improve the linking of particles 

from one frame to another. In sequences where droplets 

travel long distances between frames, a larger link range 

should be used. The link range is useful to overcome droplet 

occlusion and droplet disappearance and appearance from 

frames. The parameter values will be different for each 

sequence. 

III. RESULTS AND DISCUSSION 

A.  Droplet Size Determination 

The aim of this part of the study was to develop an 

automated method of droplet size determination. During 

image acquisition, 18 images were captured containing 3591 

droplets for analysis. The images were acquired at three 

different magnifications; 4x, 10x and 20x magnification to 

determine at which magnification the method would work 

best.  

 

The first test conducted using the Hough transform was to 

determine how many of the droplets could be detected, as a 

proportion of droplets in the image. The droplets were 

manually counted to determine the number of droplets in 

each image. Only complete droplets were counted. The 

results were summed for each magnification and are given in 
Table I. 

 

TABLE I.  RESULTS OF DROPLET DETECTION 

 Manual count Hough Transform % difference 

4x 3219 4444 38.1 

10x 326 403 23.6 

20x 46 48 4.3 

 

The Hough transform detects more droplets than were 

counted manually. This is because during the manual count, 

only complete droplets were counted and fractions of 

droplets were ignored. The Hough transform finds the 

parameters of the droplets even if they are not complete as 

shown in Fig. 1. The Hough transform does however give 

each circle it finds a strength value; the circles with high 

strength values are most likely to be complete droplets. We 

used a cutoff strength value of 100, 300 and 500 for images 

at 4x, 10x and 20x magnification respectively to differentiate 

complete droplets from partial droplets. The cutoff value is 

dependent on the quality of the images and the magnification 

at which the images were captured at. This is because the 

strength value is determined by how many pixels vote for 

the centre of a circle. Larger circles, at 20x magnification, 

will have more pixels voting because the circumference of 

the circle is larger. All the droplets considered for size 

measurement had a strength value of higher than 100, 300 

and 500 for images at 4x, 10x and 20x respectively. 

 

The second test conducted was to determine how the area 

of the Hough transform-segmented droplets compares with 

manually segmented ones. Each droplet was individually 

outlined and the number of pixels in it was calculated to give 

the area. The Hough transform outputs the radius of a 

droplet and the area is calculated using the formula for the 

area of a circle. Only a proportion of the droplets were 

manually selected because of the large number present in the 

images. The results are given in Table II. 

 

 

 

 

 

 

 

 

Figure 1: Example of droplet detection for the Hough transform. 

TABLE II.  COMPARISON OF HOUGH TRANSFORM AREA 

MEASUREMENTS WITH MANUAL MEASUREMENTS 

 Average % 

difference 

Maximum% 

difference 

Minimum% 

difference 

4x 4.7 22.4 0 

10x 2.0 5.6 0.02 

20x 1.0 2.2 0.2 

 

The Hough transform performs very well when compared 

to manual measurement. It performs best with images at 20x 

magnification with the lowest maximum percentage 

difference. 
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B.  Droplet Tracking 

With a radius of 8 pixels, a cutoff of 0 and a percentile of 

0.1, every droplet was detected in every frame. Fig. 2 gives 

an example of a droplet trajectory over 70 frames. For this 

video series a distance parameter of 15 pixels and a link 

range of 4 frames were used. Fig 3 gives an example of a 

droplet trajectory over 100 frames. In this figure it is noted 

that the trajectory jumps to another droplet instead of 

following the droplet under consideration. This phenomenon 

is very common when the droplets travel more than 50 

pixels between frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of a droplet (yellow) trajectory over 70 frames. 

 

 

 

 

 

 

 

 

Figure 3: Example of a droplet (yellow) trajectory over 100 frames showing 

trajectory jump in red. 

IV. CONCLUSION 

The Hough transform has been used to determine the size 

of droplets for droplet distribution determination [9] and 

characterization of multiphase dispersions [10].The Hough 

transform detects most of the droplets in the images. The 

best results are obtained at 20x magnification, i.e. when the 

droplet size is largest. An improvement of the image quality 

at this magnification could provide even better results. The 

disadvantage of analyzing droplets at this magnification is 

that fewer droplets per image can be analyzed because of the 

high magnification. It therefore could be advantageous to 

analyze droplet at a lower magnification when more droplet 

data is needed in a short time.  

 

Tracking algorithms [11] [12] similar to the ‘particle 

tracker’ algorithm have been used to track droplets. These 

algorithms use steps similar to the ‘particle tracker’ 

algorithm, although the way in which some of the algorithms 

are implemented is not well documented. The ‘particle 

tracker’ algorithm has the advantage of ease of 

implementation in a readily available image analysis 

package. It is effective in tracking droplets that travel less 

than 50 pixels between frames to determine their movement 

patterns. Increasing the frame rate at which the video 

sequence is captured will decrease the distance all the 

droplets travel between frames, which could prevent failure. 

The user has to input the user defined parameters as 

discussed above and can filter the trajectories to the frames 

of interest. The user can decide which particles or areas are 

of interest and the method outputs the results. The method 

thus can be customized to the user’s needs. The results from 

this study provide information about the characteristics and 

behavior of droplets in microfluidics systems. This 

information can be used to aid system designers in 

manufacturing a microfluidic system that can produce 

monodispersed encapsulated enzymes – droplets - of a 

predefined size. 
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