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Abstract— This paper presents cardiac arrhythmia detection
using the combination of a heart rate variability (HRV) analysis
and a “potential of unbalanced complex kinetics” (PUCK)
analysis. Detection performance was improved by adding fea-
tures extracted from the PUCK analysis. Initially, R-R interval
data were extracted from the original electrocardiogram (ECG)
recordings and were cut into small segments and marked as ei-
ther normal or arrhythmia. HRV analyses then were conducted
using the segmented R-R interval data, including a time-domain
analysis, frequency-domain analysis, and nonlinear analysis. In
addition to the HRV analysis, PUCK analysis, which has been
implemented successfully in a foreign exchange market series to
characterize change, was employed. A decision-tree algorithm
was applied to all of the obtained features for classification. The
proposed method was tested using the MIT–BIH arrhythmia
database and had an overall classification accuracy of 91.73%.
After combining features obtained from the PUCK analysis, the
overall accuracy increased to 92.91%. Therefore, we suggest
that the use of a PUCK analysis in conjunction with HRV
analysis might improve performance accuracy for the detection
of cardiac arrhythmia.

I. INTRODUCTION

Arrhythmia is a generalized term for a cardiac rhythm

excited by abnormal electrical activity in the heart. Some

arrhythmias produce a life-threatening condition that leads to

cardiac arrest. Therefore, the detection of cardiac arrhythmia

and its discrimination from the normal cardiac rhythm are

important clinical tasks.

Various methods have been proposed to detect arrhythmia.

These techniques can be classified as beat-based [1], [2]

and heart rate variability (HRV) based [3], [4] methods.

Beat-based methods provide a detailed beat per beat de-

tection algorithm, and can distinguish more detail about

the arrhythmia type. However, this method has a heavy

computational load. Another proposed method analyzes dis-

tinguishing features extracted from the R-R interval data.

Although that method is unable to distinguish details of the

type of arrhythmia, it provides a fast detection alternative,

especially when used under critical conditions such as in an

emergency unit.

There are many kinds of HRV analysis. Each addresses

the interpretation and quantification of the R-R interval data

from a different point of view. In application, the individual

analysis method does not provide good information about

the patient’s condition [5], [6]. The available methods are

usually combined to produce better results. Many methods
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are now being proposed to extract HRV to provide an

alternative type of analysis result and interpretation. One

promising method of time-series analysis was developed

in the field of econophysics. This analysis considers the

existence of potential forces in the time series that influence

the fluctuation of the time series. Because its formulation is

applicable for any time sequence and for apparently random

data series, it may be applicable to R-R interval data.

In this study, we extract R-R interval data features using

various HRV analyses and “potential of unbalanced complex

kinetics” (PUCK) analysis to characterize normal cardiac

rhythm and cardiac arrhythmia. A decision-tree algorithm

was employed for classification purposes using training and

testing data sets derived from R-R interval data features.

II. MATERIALS AND METHODS

A. Database

R-R interval data data used in this study were generated

from the ECG signals obtained from the MIT-BIH Ar-

rhythmia Database [7]. The MIT-BIH Arrhythmia Database

contains 48 half-hour excerpts of two-channel ambulatory

ECG recordings obtained between 1975 and 1979. It contains

various types of arrhythmia, such as premature ventricular

contraction (PVC) and atrial premature contraction (APC).

The database has been used as a reference standard for

conducting research on the problem of cardiac arrhythmia

detection and classification [1], [2], [3], [4]. Two or more car-

diologists working independently manually annotated each

of the approximately 109,000 beats. Then, to obtain the

computer-readable reference annotations for each beat in the

database, disagreements were resolved. R-R interval data

and these annotations were extracted from the original ECG

recording using RRLIST software provided by PhysioNet

[8].

After obtaining all R-R interval data from all of the data

sets, each data set was segmented into 64 R-R intervals,

producing a total of 1693 R-R interval data segments.

Each segment was classified as “normal” of “arrhythmia”

if the segment contained no arrhythmia episode or contained

the arrhythmia episode, respectively, resulting of total 706

normal segments and 987 arrhythmia segments. In addition,

the artificial beat originating from a pacemaker device was

not considered an arrhythmia [3].

B. HRV analysis

Generally, the cardiovascular system expresses linear and

nonlinear behaviors. To clearly observe the system, different

linear and nonlinear parameters should be used for R-R
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interval data characterization. In this study, a combination of

both linear and nonlinear features of the R-R interval data

was considered.

Three types of HRV analyses were performed to extract

features of R-R interval data segments including time-domain

analysis, frequency-domain analysis, and nonlinear analysis.

In addition, a new method was proposed for extracting the

features of R-R interval data, termed the “potential of unbal-

anced complex kinetics” (PUCK) analysis [9]. Time-domain

analysis provides a statistical value of the R-R time series.

The mean of all R-R intervals (MeanRR), standard deviation

of all R-R intervals (SDRR), coefficient of variance of R-R

intervals (CVRR), and root-mean-square of the successive

difference of R-R intervals (RMSSD) were calculated.

In the frequency domain, the power spectrum density was

measured by discrete Fourier transformation from segmented

R-R interval data. Prior to obtaining the power spectrum, data

were interpolated using the linear interpolation method. Four

features were considered: the low-frequency (LF) component

(area under 0.04–0.15 Hz), high-frequency (HF) component

(area under 0.15–0.4 Hz), total power (TP) component (area

under 0.01–0.4 Hz), and LF/HF component.

Three nonlinear analyses were employed, including sam-

ple entropy (SampEn), Poincaré plot analysis (SD1 and

SD2), and detrended fluctuation analysis (DFA). The Sam-

pEn analysis parameters, similarity tolerance r and epoch

length m, were set at 2 and 0.2×SDNN, respectively. SD1

and SD2 in the Poincaré plot analysis were calculated from

the plot as the standard deviation of line y = x and line

y = −x + 2MeanRR, respectively. Two features from the

DFA were obtained from the slope of the scaling exponent

at fewer than 11 beats (DFA α1) and more than 11 beats

(DFA α2).

PUCK analysis was introduced in the econophysics field as

an analysis method to observe the time series of market data

[9]. The main purpose of applying this method is to extract

characteristics of the time-series data. It requires 500–2000

data points to obtain a feasible result. In our previous finding,

a shorter R-R interval data (256–1024) was successfully used

to extract the characteristics of some R-R interval data. In

this study, we considered 64 data points from a segmented

R-R interval data.

PUCK analysis was performed to extract features of the

R-R interval data. Using the specific method, we estimated

the best value of the order of the “optimal moving average”

(k), and the order of the “super moving average” (M ). We

detected no significant change when combining different

values of k and M . Thus, we assigned values of 5 and

8 to the parameter settings k and M , respectively. This

combination was taken from the smallest possible parameter,

considering that the small R-R interval data segment was

used for PUCK input. PUCK features were calculated by

observing scatter plot from those two moving averages in

which one of them is assumed as the noise separated R-

R interval data and another is smoother moving average

representing long term trend of the R-R interval data. The

first feature, scaling slope, was estimated from the best fit
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Fig. 1. R-R interval data segment of a normal rhythm and arrhythmia.

line of the scatter plot. In addition, the standard deviations

of the scatter plot toward perpendicular to the scaling slope

and linear to the scaling slope were considered as SSD1 and

SSD2.

C. Decision tree classification

All feature data obtained from the HRV analysis were later

used for training and testing of the classification algorithm.

For this purpose, a decision-tree classification algorithm, the

C4.5 algorithm, was employed and calculated using WEKA

classification software [10]. The training and testing data

sets each were randomly extracted from 50% and 50%,

respectively, of all R-R interval segment features data.

III. RESULTS

The R-R interval data segment of a normal rhythm and

some types of arrhythmia such as premature ventricular

contraction (PVC), atrial premature contraction (APC), ven-

tricular escape beat (VESC), and junctional premature beat

(NPC) are shown in Fig. 1. The R-R interval of a normal

beat is comparatively higher than that of arrhythmic beats

except for that of VESC. The R-R interval data containing

PVC seemed to have a rapid fluctuation, and a fast R-R

interval was observed in the signal containing APC beats.

However, escaping beats noted as VESC produced a longer

R-R interval.
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Fig. 2. HRV analysis results from left to right as normal, PVC, APC, VESC, and NPC respectively. The red line in the b. Poincaré plot is the line of
identity. The red line in c., the detrended fluctuation analysis, shows the α1 slope whereas the blue line shows the α2 slope. Scaling slope was shown by
the red line in d. while SSD1 and SSD2 represent standard deviation of the scatter plot, perpendicular and linear toward scaling slope, respectively

Fig. 2 shows a representation of the HRV and PUCK

analyses in normal rhythms and arrhythmias. The power

spectrum component of the normal rhythm is relatively lower

than that of arrhythmia. The shape of the geometric plot in

the Poincaré plot was easily distinguishable in the normal

rhythm and arrhythmias. Although the normal rhythm and

APC have similar Poincaré plot shapes, the SD1 and SD2

of the normal plot is larger than that of the APC. DFA

analysis shows that DFA α1 and DFA α2 are strongly

similar in arrhythmia, except for APC. This tendency was

also found in the Poincaré plot. Clearer characteristics were

found in the PUCK analysis. The SSD1 and SSD2 of normal

rhythms are lower than those in arrhythmias. The scaling

slope represented by the red line also distinguishes normal

rhythms from arrhythmia.

After calculating all features from the HRV and PUCK

analyses, a Wilcoxon rank-sum test was performed to deter-

mine the significance value. All features with a significance

level p < 0.05 were used for classification training and

testing. Table I lists mean ± standard deviation of each

feature for normal rhythm and arrhythmia and its correspond-

ing ROC area (AUC). All features have a significance level

of p < 0.001 between the normal rhythm and arrhythmia,

except the LF and TP component. AUC indicates individual

parameter performance. RMSSD and SD1 have the highest

AUC 90.96%.

Table II lists the classification accuracy using a decision-

tree classifier. Classification accuracy was increased after

combining one or more analysis-type features. Increasing ac-

curacy was observed in almost all combinations of traditional

HRV analysis features and additional PUCK features.

IV. DISCUSSION

Arrhythmia detection using features extracted from the R-

R interval data is presented in this study. Our motivation
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TABLE I

HRV MEASURES IN MEAN ± SD OF NORMAL AND ARRHYTHMIA AND

ITS CORRESPONDING ROC AREA (AUC)

Features Normal Arrhythmia AUC (%)

MeanRR (ms) 846 ± 174 747 ± 158*** 66.44
SDRR (ms) 45.5 ± 42.6 138 ± 118*** 85.31
CVRR (ms) 5.31 ± 4.70 17.9 ± 12.7*** 89.56
RMSSD (ms) 46.5 ± 42.5 206 ± 171*** 90.96

LF (103ms2) 12.3 ± 5.26 14.2 ± 8.72* 53.23

HF (103ms2) 10.9 ± 4.07 15.1 ± 8.51*** 66.27
LF/HF 1.11 ± 0.30 0.98 ± 0.27*** 63.82

TP (103ms2) 81.9 ± 13.2 81.9 ± 27.6** 54.26
SampEn 2.05 ± 0.41 1.36 ± 0.50*** 85.90
SD1 (ms) 33.1 ± 30.3 147 ± 122*** 90.96
SD2 (ms) 53.9 ± 53.2 121 ± 121*** 77.66
DFA α1 0.99 ± 0.32 0.60 ± 0.29*** 81.84
DFA α2 0.67 ± 0.42 0.41 ± 0.33*** 68.20
Scaling slope -0.54 ± 0.29 -0.80 ± 0.38*** 69.87
SSD1 (ms) 31.1 ± 23.3 60.3 ± 50.3*** 76.72
SSD2 (ms) 48.8 ± 34.6 123 ± 104*** 83.40

TABLE II

CLASSIFICATION RESULTS OF INDIVIDUAL ANALYSIS TYPE AND ITS

COMBINATION

Combination Accuracy

Time domain 91.96
Freq. domain 80.26
Nonlinear 90.07
PUCK 79.08
Time domain, freq. domain 91.13
Time domain, nonlinear 92.91
Freq. domain, nonlinear 91.13
Time domain, PUCK 92.20
Freq. domain, PUCK 87.71
Nonlinear, PUCK 90.43
Time domain, freq. domain, PUCK 91.84
Time domain, nonlinear, PUCK 92.43
Freq. domain, nonlinear, PUCK 93.74
Time domain, freq. domain, nonlinear 91.73
Time domain, freq. domain, nonlinear, PUCK 92.91

for applying this method instead of a beat-based method

is that the use of segmented R-R interval data have a

lower computational load. Thus, the method can be applied

in near-real-time situations. HRV itself has been proposed

for clinically observing the autonomic nervous system [11]

(ANS) in which ANS observation could be carried out at

once.

Various HRV analyses are used. One challenge in this

study is the use of a very short R-R interval data segment.

The use of a specific length of R-R interval data has been

proposed [11]. However, considering the problem, shorter

signal segment is preferable. Especially PUCK analysis, the

number of points used is much smaller than the suggested

number [9].

Researchers have proposed various classification algo-

rithms using HRV features for arrhythmia detection, includ-

ing neural networks [3], support vector machines [4], and

genetic programming [12]. We focus on the improvement

of classification performance by empowering HRV analysis.

This study attempted to provide alternative and/or additional

HRV measures for enhancing the detection of cardiac ar-

rhythmia. Therefore, we used an easily understood statistical

classifier decision-tree algorithm to distinguish between HRV

segment groups.

V. CONCLUSIONS

In this paper, cardiac arrhythmia detection using a com-

bination of an HRV and PUCK analysis is presented. The

available HRV analysis could extract the features of a short

R-R interval data segment from the arrhythmia database.

Although the use of a very short R-R interval data in

PUCK analysis is still debated, this process characterized

the R-R interval data containing arrhythmia with statistically

significant accuracy. Our classification results showed that

PUCK might improve the accuracy with which cardiac

arrhythmia is detected. Compared to the use of just one

type of HRV analysis, combining the features of these

analyses with a PUCK analysis improved the accuracy of

arrhythmia detection. Because a simple statistical classifier

using a decision-tree algorithm was employed in this study,

we believe that the accuracy and classification performance

could be enhanced further using various classifier algorithms.
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