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Abstract— The estimates of heart rate variability (HRV) low
frequency (LF) and high frequency (HF) components with
constant frequency bands may distort when the frequency
of respiratory sinus arrhythmia induced HF component ap-
proaches the LF-HF frequency limit. In this study we present
a method for dynamically estimating the LF-HF limit and
dividing the spectrum to LF and HF components that can
overlap. The method is based on multivariate autoregressive
model which is solved dynamically with Kalman smoother
algorithm. The spectra of each individual pole with all the zeros
are calculated and then multiplied with a Hanning window
on the pole frequency. These spectra are summed to LF or
HF components. The method was applied to three subjects
whose electrocardiogram and respiration was recorded during
a controlled breathing protocol. The results show that the
HF component power increases when breathing frequency de-
creases. Also the component powers obtained with the presented
method are reliable even when LF and HF frequencies are close
to each other.

I. INTRODUCTION

Heart rate variability (HRV) analysis is a commonly used

tool for assessing the functioning of the autonomic nervous

system (ANS). HRV is usually analyzed in frequency domain

by dividing the power spectrum of R-to-R peak interval

(RR) time series into low frequency (LF, 0.04-0.15 Hz)

and high frequency (HF, 0.15-0.40 Hz) bands [1], [2]. The

LF component of HRV is thought to originate from both

sympathetic and parasympathetic activities. The HF compo-

nent of HRV originates from parasympathetic regulation of

heart rate. The HF component peaks at respiratory frequency

because of respiratory sinus arrhythmia (RSA). Therefore,

the estimates with constant bands will distort when the

frequency of breathing induced HF component approaches

the LF-HF frequency limit and leaks to the LF band. Hence

the respiratory frequency should always be taken into account

in HRV analysis, at least to ensure that the RSA component

is within the defined HF band.

In this paper, we introduce a method for dynamical

estimation of the LF and HF components of HRV tak-

ing into account the instantaneous respiratory frequency.

In the proposed method, RR time series and respiration

(RSP) signal are modelled using a multivariate autoregres-

sive (MAR) model. This kind of model (or autoregressive

moving-average, ARMA) has been previously used to study
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HRV with mainly blood pressure signal [3], [4], [5], [6], [7],

[8].

The model coefficients are estimated for every time step

using a Kalman smoother algorithm. From the estimated

model coefficients, instantaneous power spectra for HRV and

respiration are obtained. Furthermore, the HRV spectrum is

divided into LF and HF components at every time step by

defining a physiologically meaningful limit for separating

the LF and HF components based on the instantaneous

respiratory frequency.

Similar decomposition has been done previously with

univariate AR model in [9], but the benefits of the MAR

modeling are that the dependencies between the two signals

can be more precisely evaluated and the HRV spectrum can

be estimated more accurately.

II. MATERIALS & METHODS

A. Subjects and measurements

Three young adult males participated in this study. The

measurement protocol included the subject sitting in an

armchair and breathing in a controlled rate while electro-

cardiogram (ECG) and RSP signals were recorded from the

subject. ECG channel V5 and RSP were measured with

ECG100C and RSP100C modules of BIOPAC MP150 data

acquisition system (BIOPAC Systems, Inc., Goleta, USA)

with sampling rate of 500 Hz.

The breathing protocol consisted of segments of controlled

breathing in descending frequencies 0.20, 0.17, 0.13 and 0.10

Hz. Each segment lasted three minutes. Visual and audio

indicators of the current frequency was shown to the subject

and he was instructed to breath at the same frequency.

B. Pre-processing of the signals

The QRS detection for the ECG was done with Kubios

HRV analyzing software [10]. The obtained RR interval time

series was interpolated to 4 Hz and the very low frequency

(VLF, 0-0.04 Hz) trend components were removed using a

smoothness priors detrending method [11]. The RSP signal

was down sampled to 4 Hz and the trend was also removed

with smoothness priors.

C. Multivariate Kalman smoother

We used multivariate Kalman smoother to analyze the

signals spectra dynamically. It consists of filter and smoother

algorithms. The filter part is first run forward in time and
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the obtained estimates are used then to run the smoother

backwards in time to get the smoothed estimates.

A time-varying multivariate autoregressive model (MAR)

of order p can be expressed as

xt = −

p
∑

j=1

A
(j)
t xt−j + et (1)

where xt is the signal value at time t, A
(j)
t is the j’th

autoregressive parameter and et is the observation error. In

a two signal case (RR and RSP) xt and et are vectors

xt = (x1t x
2
t )
T (2)

et = (e1t e
2
t )
T (3)

where x1t and x2t are the signal values at time t for RR and

RSP, respectively, and likewise for e1t and e2t . The parameter

A
(j)
t is now a 2× 2 matrix

A
(j)
t =

[

a
(1,1)
t a

(1,2)
t

a
(2,1)
t a

(2,2)
t

](j)

(4)

where the diagonal values are MAR models auto-coefficients

and the off-diagonal ones are cross-coefficients. By denoting

Ht = (xt−1, . . . , xt−p) (5)

θt = (−A
(1)
t , . . . ,−A

(p)
t )T (6)

we can present equation (1) as a matrix multiplication

xt = Htθt + et (7)

which is the linear observation model for the Kalman

smoother algorithm. The state model for Kalman smoother is

the estimation of MAR parameters with random walk model

θt+1 = θt + wt (8)

where wt is the state noise.

Using equations (7) and (8) the MAR parameters can be

estimated with Kalman filter functions

Cθ̃t|t−1
= Cθ̃t−1

+ Cwt−1
(9)

Kt = Cθ̃t|t−1
HTt (HtCθ̃t|t−1

HTt + Cet)
−1 (10)

θ̂t = θ̂t−1 +Kt(xt −Htθ̂t−1) (11)

Cθ̃t = (I −KtHt)Cθ̃t|t−1
(12)

where θ̃t is the state estimation error, θ̃t|t−1 is the state

prediction error, Kt is the Kalman gain vector, and Cet
and Cwt are the observation and state noise covariances,

respectively.

The observation noise covariance matrix Cet is estimated

adaptively with function

Cet = 0.95Cet−1
+ 0.05 ǫ2t (13)

where ǫt = xt − Htθ̂t−1 is current prediction error vector,

which is used as an estimate of the unknown observation

error et. The observation noise covariance is also used to

calculate the state noise covariance matrix

Cwt = λCet/Cxt (14)

where Cxt is the covariance matrix of signals xt calculated

from 100 previous timesteps and λ is a set coefficient to scale

the ratio. This way the adaptation speed of the algorithm can

be controlled with single variable λ.

The Kalman smoother part is run backwards in time

after the filter algorithm has been ran forward in time. The

equations for the smoother algorithm are

θ̂ St = θ̂t +Bt(θ̂
S
t+1 − θ̂t) (15)

Cθ̃ S
t

= Cθ̃t +Bt(Cθ̃ S
t+1
− Cθ̃t+1|t

)BTt (16)

where Bt = Cθ̃tC
−1

θ̃t+1|t
and θ̂ St denotes the smoothed

parameter estimate for time t. For a closer look at Kalman

smoother equations see for example [12].

The initial values for the filter part were obtained by

estimating the MAR parameters using the first 40 s to solve

equation (1) with least square method for the first time step.

Model order p = 20 was used for both the initialization and

the actual Kalman algorithm. The model order was chosen

by visual inspection to produce high enough frequency

resolution for the cases when RSP frequency was 0.1 Hz.

From the initialization we got θ̂1, Ce1 and Cxt . Adaptation

coefficient was set to λ = 10−4 and Cθ̃1 = 0.1I .

D. MAR spectral estimate

The estimated MAR parameters and observation noise

covariance matrix can be used to calculate spectral estimates

of the signals for each time step (see for example [13] for

more detailed explanation). This can be done by first forming

the z-transform of MAR model (1)

Pt(z) = A−1
t (z)CetA

−H
t (1/z∗) (17)

where At(z) is a 2 × 2 matrix with polynomials in each

element

At(z) = [I −A
(1)
t z

−1 −A
(2)
t z

−2 −A
(3)
t z

−3 − ...] (18)

and z∗ denotes a complex conjugate of z.
Substituting z with e−i2πjf/fs equation (17) turns into

power spectral function

Pt(f) =
1

fs
A−1
t (f)CetA

−H
t (f) (19)

where fs is the sampling frequency and Pt(f) is a 2 × 2
matrix. The power spectral density (PSD) for RR and RSP

can be calculated as absolute values of diagonal elements of

Pt(f)

PRR(f) = |(Pt(1, 1)(f))| (20)

PRSP (f) = |(Pt(2, 2)(f))| (21)

The off-diagonal elements of Pt(f) can be used to calculate

also phase and coherence spectra, but they are not used in

this study.
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Fig. 1. Upper axes: Respiration protocol and peak frequencies of LF and HF components of RR and LF-HF limit for a single subject. Lower axes:
Estimated LF (blue) and HF (red) PSD components from four different time steps.

E. MAR model root factorization

The roots of z-transform (17) can be examined more

closely by calculating the inverse matrices (timestep indicator

t is left out for clarity)[13].

P(z) = 1
|A(z)||A(1/z∗)|

[

A(2, 2)(z) −A(1, 2)(z)
−A(2, 1)(z) A(1, 1)(z)

]

·

Ce

[

A(2, 2)(1/z∗) −A(1, 2)(1/z∗)
−A(2, 1)(1/z∗) A(1, 1)(1/z∗)

]H

(22)

where |A(z)| is determinant of A(z). This means that there

is the same root polynomial |A(z)||A(1/z∗)| in denominator

for each auto and cross spectra i.e. the poles of each spectra

are the same and only the zeros changes according to the

matrix multiplication. It should be noted, that MAR model

spectrum has zeros even though it does not have moving

average (MA) part. Single variable AR model spectrum has

only poles and not zeros.

For example the PSD for RR can be calculated from

polynomial equation

PRR(z) = [A(2, 2)(z)Ce(1, 1)A(2, 2)(1/z∗)−

A(1, 2)(z)Ce(2, 2)A(1, 2)(1/z∗)]/

(|A(z)||A(1/z∗)|) (23)

By solving the roots of polynomials in numerator and

denominator, this can be presented as

PRR(z) = ρe

∏I
i=1 (z − βi)(1/z − β

∗
i )

∏K
k=1 (z − αk)(1/z − α

∗
k)

(24)

where αk are the poles, βi are the zeros and ρe is a

corresponding element of Ce. Because ρe is different for

parts that are from auto-coefficients (A(2, 2)) and cross-

coefficients (A(1, 2)), calculation was done separately and

the pole spectra were summed together afterwards.

Spectrum estimates for each individual pole were calcu-

lated as

Pk(z) = ckρe

∏I
i=1 (z − βi)(1/z − β

∗
i )

(z − αk)(1/z − α∗k)
(25)

where ck is a coefficient that scales the power to be same as

in full PSD in the frequency of the pole

ck =
1

∏

l 6=k (zk − αl)(1/zk − α
∗
l )

∣

∣

∣

∣

∣

zk=e
−i2πfk/fs

(26)

where fk is the frequency of pole αk.

To prevent any unwanted power generated by the zeros

to frequencies far from the pole the individual pole spectra

were multiplied with 1 Hz wide Hanning window that was

placed on the frequency of the pole.

F. LF and HF components

The respiration frequency for each time step was deter-

mined as the frequency of maximum power of the RSP PSD

(21). The limit frequency of LF and HF poles was set to

be 0.01 Hz lower than respiration frequency. If the RSP

frequency was higher than 0.15 Hz the limit was set to 0.14

Hz. The spectra from poles above the limit were summed to

be the HF component and the spectra below the limit were

summed to be LF component.

The components were estimated for every 5 second for

breathing frequencies 0.2− 0.1 Hz to see how the algorithm

works when HF frequency gets closer to LF frequency and

the components start to overlap.

III. RESULTS

The breathing protocol, estimated peak frequencies for

LF and HF components and the LF-HF limit frequency are

presented in Fig. 1. There are also samples of estimated com-

ponent powers for each breathing frequency. The components

are clearly separated even when the peaks are close to each

other (LF: 0.07 Hz and HF: 0.10 Hz).

In Fig. 2 the protocol and peak frequencies for LF and

HF components are presented for all three subjects. There

are also the corresponding LF and HF component powers

presented in natural logarithmic scale. The HF power in-

creases while the HF frequency decreases. At the same time

the LF power stays almost at the same level.
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Fig. 2. Upper axes: LF (blue) and HF (red) peak frequencies of RR and LF-HF limit during respiration protocol for 3 subjects. Lower axes: Power values
in natural logarithmic scale for LF (blue) and HF (red) components from the corresponding measurement on the upper figures. The rapid change in HF
peak frequency at the start of the protocol with subject 2 is probably caused by the adaptation of the algorithm and low HF power.

IV. DISCUSSION

The presented method enables dynamic estimation of the

LF and HF component of RR time series with MAR model.

From the figures can be seen that the HF frequency tracks

the breathing frequency fairly well on every subject while

the LF frequency stays approximately at the same level.

The increase of HRV when respiration frequency decreases

(in Fig. 2) has been previously reported [14], [15]. However,

the results of this study indicate that it is result of increase in

HF component power rather than in LF component power.

Traditionally calculated LF power would distort when the

HF power overlaps with selected LF frequency band.

Due to the spectral decomposition, reliable component

powers are obtained even when LF and HF components

overlap. Also the individual pole spectra can be divided into

those resulted from MAR auto-coefficients (from RR) and

those resulted from MAR cross-coefficients (from RSP). This

can give more information on how greatly the respiration

affects on the HRV.
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