
  

 

Abstract— The traditional method of estimating an Event 

Related Potential (ERP) is to take the average of signal epochs 

time locked to a set of similar experimental events. This 

averaging method is useful as long as the experimental 

procedure can sufficiently isolate the brain or non-brain process 

of interest. However, if responses from multiple cognitive 

processes, time locked to multiple classes of closely spaced 

events, overlap in time with varying inter-event intervals, 

averaging will most likely fail to identify the individual response 

time courses. For this situation, we study estimation of 

responses to all recorded events in an experiment by a single 

model using standard linear regression (the rERP technique). 

Applied to data collected during a Rapid Serial Visual 

Presentation (RSVP) task, our analysis shows: (1) The rERP 

technique accounts for more variance in the data than 

averaging when individual event responses are highly 

overlapping; (2) the variance accounted for by the estimates is 

concentrated into a fewer ICA components than raw EEG 

channel signals. 

I. INTRODUCTION 

The Event Related Potential (ERP) averaging method for 

electroencephalographic (EEG) data [1] is one way to gain 

insight into how specific cognitive processes are related to 

brain electrical activity. Traditionally, the way of increasing 

the signal to noise ratio (SNR) of an ERP estimate is to 

average epochs time-locked to a stimulus class of interest. 

This technique places severe restrictions on the experimental 

protocol: only a small number of stimulus categories can be 

used, stimulus events must be well separated in time and all 

other cognitive processes must be held constant. Violating 

the latter conditions will cause the ERP to be estimated sub-

optimally. Here we study using multiple regression as a way 

to overcome this limitation, extending the work of N. J. 

Smith [2]. In [3], Hinrichs et al. have suggested a highly 

similar approach for deconvolving fMRI responses. [4, 5] 

have suggested using separate regression models for each 
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individual latency, such as massive univariate general linear 

analyses. [6] has proposed using Generalized Additive 

Models (GAMs). In [2], Smith offers a unified conceptual 

framework for ERP regression and shows how these 

different techniques relate to averaging for the purposes of 

ERP estimation. 

 

We continue this discussion by applying linear regression 

and averaging to a real EEG dataset and exhaustively 

comparing the results of the two approaches. The goal is to 

make clear that in practice, regression can offer a significant 

performance increase compared to averaging. Indeed, as 

EEG experiments become more sophisticated, with many 

(intermittent or continuous) processes being monitored 

simultaneously, averaging ceases to be an effective option. 

Independent Component Analysis (ICA) [7] has become a 

popular and often effective method for separating EEG 

sources [8, 9]. Thus, we also compared how regression and 

averaging compare with one another in both ICA component 

activations (ICs) and EEG channels.     

II. BACKGROUND 

A. A Problem With Averaging 

 

 

Figure 1.  Illustrating how averaging can produce an incorrect ERP 

estimate in the presence of overlapping activity due to closely spaced 

cognitive events. The latency window is a typical EEG epoch in a 

12/s rapid serial visual presentation (RSVP) experiment. An ERP of 

interest (blue), is produced following each visual stimulus  every 83 

ms (black). These ERPs combine additively, giving a misleading (red) 

averaged Steady State Response (SSR) ERP estimate. Regression 

considers all the experimental events in a single additive model, 

taking into account this overlap.   
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If events in an experiment occur sufficiently close in 

time to one another, the EEG brain responses to these 

events will overlap. Taking an average of these event time-

locked epochs will produce a summed and/or blurred ERP 

estimate.  

B. Data 

The experiment is fully described in [10]. 127-channel 

EEG data were collected during a Rapid Serial Visual 

Presentation (RSVP) task involving satellite picture 

presentation. The subject was shown bursts of 49 satellite 

images in 4.1 seconds (12/s.). In 60% of the bursts, a 

(flying airplane) target feature was randomly added to one 

image. At each burst end, the participant indicated by 

button press whether or not that burst contained the target 

feature. During training, they were told whether they were 

correct or not.  

 

There were nine recorded event types in the experiment, 

listed by (event-code) event-description: (1) non-target 

stimulus, (2) target stimulus, (4) “no targets” button press, 

(5) “one target” button press, (6) trial block start, (16) trial 

start, (32) “correct” feedback given, (64) “incorrect” 

feedback shown, and (129) image burst start. 

III. METHODS 

We calculated ERP estimates for a seven subject/12 

session study across nine different events using averaging 

and linear regression with Ordinary Least Squares (OLS). 

This analysis was repeated for all 127 channels of EEG data 

and again for all 127 ICs, derived by extended Infomax ICA 

[11]. We used five-fold cross-validation to obtain our 

performance figures: the ERPs were calculated with training 

data and validated on test data [12].    

A.  Preprocessing 

First, we addressed the issue of outliers and artifacts.  

We identified outlier data portions by two methods: Low 

Probability and Mutual Information Reduction (MIR). For 

the probability method we first whitened the data and 

performed a rank transform to obtain a two-tailed 

significance value for each sample. We then found 200 ms 

windows where the average log significance over all the 

sphered dimensions and time-frames was higher than 2.1 

and marked them as outliers. For the MIR method, we first 

calculated the mutual information reduction index [13] in 

2s windows with 80% overlap using the sphering matrix. 

Then we found regions with MIR Z score of lower than 

1.5 and marked them as outliers. We discarded events 

occurring during or near outlier periods. Out of 23,477 

events, 1,654 were identified as contaminated and 

discarded. The data were highpass filtered (3 dB at 1 Hz) 

to reduce DC bias.     

 

All ERPs were estimated using the same maximum 

length, heuristically set for this analysis at 1 second (256 

samples), from 125 ms to 875 ms around each event. 

This defined 256 variables per event. For nine event types, 

each regression or averaging model thus contained 2304 

ERP parameters for each EEG channel or IC.  

B.  Regression Framework 

First we looked at the case of only one event type, E1, 

producing an ERP response . The observed signal (IC or 

channel) y is then a linear transformation of plus a 

Gaussian noise term, 
 

 = [ N ]
T
        (1) 

y = A1 +          (2)  

 

We position y and  as a column vectors of length M 

(the length of the data) and N (= 256) respectively. A1 is 

the M x N matrix of predictors, xmn, constructed from 

latency recordings. xmn has a value of 1 when the n
th

 

sample of ERP  is predicted to occur at latency m.  

 

 If we want to estimate the response to more than one 

event type, we stack the n in a column vector, and 

concatenate their corresponding An along the second 

dimension  

 

 A = [ A1 A2 … An ]        (3) 

 = [ (
(

(n
]T

     (4)           

 

and subsequently  

 

y = A +         (5) 

 

with least squares solution 

 

  reg

 = (A

T
A)

-1
A

T
y          (6) 

 

C.  Performance Metrics   

We subtract the ERP estimates from the original signal 

to obtain a residual noise signal. The difference between 

the variance (power) of the original signal and the 

variance of the noise signal represents the variance 

accounted for by that ERP. We use this Reduction of 

Variance (ROV), as our metric, with higher ROV 

corresponding to better performance.  

 

ROV  (PData   PNoise)      (7)  

 

The reason for using ROV instead of Signal to Noise 

Ratio (SNR)  

 

SNR  PSignal /PNoise         (8) 

 

is that we aren’t especially interested in maximizing the 

size of the ERP estimate (the “signal” in this case). ROV 

measures to what extent the estimate accounts for overall 

variance in the data. 
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  For each event type in the experiment, we computed the 

ROV for averaging by extracting each epoch (yi) and 

subtracting the averaged ERP estimate av from it. 

 

 
av

i = yi  av          (9) 

ROVav = < var[yi]   var[ 
av

i] >          (10) 

 

where the mean is taken across all the events of that type. 

For regression, we computed a signal estimate  

 

y
reg

 = Areg
          

(11) 

 

then, extracted each epoch from the estimated signal (y
reg

i) 

and the original signal (yi).  

 

 
reg

i  = yi  y
reg

i          (12) 

ROVreg = < var[yi]   var[ 
reg

i] >          (13) 

 

 We use normalized estimates from (14) to identify which 

channels/ICs have the highest ROV percentage.  

 

ROV = ROV/var[yi]       (14) 

ROV of the top 20 channels/ICs from each dataset are 

averaged to obtain the final estimates for each event type.   

For significance testing we applied a two-sample t-test (p 

< 0.01) to the cross-validation folds of all twelve datasets. 

IV. RESULTS 

A.   ERP Estimates (Figure 2) 

Due to the 83-ms stimulus onset asynchrony, simple 

average responses to non-target type 1 events had 

significant confound from overlapping responses. As 

shown in Figure 2, the averaged estimate does not reflect 

the ERP associated with a single non-target frame (Figure 

1 shows graphically how this occurs). In this case, 

regression recovered a plausible visual response to each 

non-target stimulus event. Event type 6 did not usually 

occur near any other experiment events. Here, as 

expected, regression and averaging gave similar results.  

B. Performance as Measured by ROV (Figure 3) 

1) Event type 1 (Figure 3, top panel) shows the most 

significant difference between the two methods for both 

ICs and channels. For the most frequent event type 1,  
 

 

 

 

Figure 2.  Comparison of ERP estimates by averaging (red) and 

regression (blue) for five event types. ROV was statistically higher for 

regression in event type 1. stimates are for a lateral occipital IC. 

Figure 3.  Comparison between averaging and regression ROV for 

EEG channels and ICA components. The components and channels 

are sorted and plotted in normalized ROV form. 
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regression has the advantage for both channel and IC 

measures. Compare the difference in the regression versus 

the average ERP (SSR) estimates in Figure 2 (top panel). 

The averaging method clearly did not estimate ERP for 

this event type. For the other event types, which are less 

affected by overlap, the two methods performed similarly. 

 

2) Comparing IC and channel results, we notice a peak of 

ROV in the first 2-3 ICs for each stimulus type. Since ICs 

are thought to typically represent the synchronous field 

activity across a single cortical patch [14], broadly 

projected to the scalp electrodes by volume conduction, 

we may expect the regression result to show higher ROV 

for a smaller number of ICs than scalp channels. The ROV 

for channels is indeed distributed across a larger number 

of channels. This is expected, since EEG signals at scalp 

electrodes that are physically close are highly correlated 

[8].   

 

3)  Normalized ROV is quite low across the board: no 

more than 12% of the variance in any channel or 

component signal is accounted for by either method, and 

usually much less. This is consistent with the frequent 

observation that most EEG signal variance is not produced 

by time and phase locked responses to external events. 

V.    DISCUSSION 

As demonstrated in [2], OLS regression can be thought of 

as a natural extension of ERP averaging that can be applied 

in a larger range of experimental conditions. Algebraically, 

OLS reduces to averaging when there is no overlap between 

experimental responses (e.g. Figure 2, bottom panel).  

 

Our ROV analysis showed that regression is capable of 

explaining more variance in experimental data than  

averaging. This overall comparison is limited in the sense 

that it cannot tell us whether a certain portion of an ERP 

waveform is best represented by either method. In other 

words, whether or not a specific peak in a response is better 

estimated by averaging or regression cannot be decided from 

this analysis alone. The potential benefit of regression is only 

clear when considering an ERP as a whole and should 

depend on its degree of overlap with responses to other 

experimental events.    

 

Possible extensions: Since OLS is the simplest estimator 

beyond averaging, the predictive performance of our model 

might be expected to increase by utilizing more modern 

techniques. A problem with estimating EEG parameters by 

OLS is that artifacts can drastically affect its L2-norm error 

function. The Least Absolute Deviations (LAD) [15] 

technique instead relies on an L1-norm error function and 

thereby may provide a more robust estimator. The 

performance of the model is also highly sensitive to its 

number of parameters. Introducing regularization on the ERP 

parameters would be a reasonable way to control for this 

effect and discourage over-fitting.     

VI. CONCLUSION 

When overlapping evoked responses are produced by 

experimental events that are closely spaced in time, multiple 

stimulus events may contribute to any given average event-

related potential (ERP) feature. Some additional assumption 

is necessary to properly segregate this variance. The 

regression (rERP) technique assumes that ERPs to distinct 

events sum linearly. In all other ways, the rERP and ERP 

measures are identical. Yet, as we show here, the rERP 

approach can account for more total data variance. This 

shows that the rERP assumption is a viable one for analyzing 

data from rich and complex EEG data-sets. 
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