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Abstract— To address the difficult and necessity of early 

detection of sleep apnea hypopnea syndrome in infants,  we 

present a study into the effectiveness of pulse oximetry as a 

minimally invasive means of automated diagnosis of sleep 

apnea in infants. Overnight polysomnogram data from 328 

infants were used to extract time-domain based oximetry 

features and scored arousal data for each subject. These 

records were then used to determine apnea events and to train 

a classifier model based on linear discriminants. Performance 

of the classifier was evaluated using a leave-one-out cross-

validation scheme and an accuracy of 68% was achieved, with a 

specificity of 68.6% and a sensitivity of 55.9%. 

I. INTRODUCTION 

Sleep apnea hypopnea syndrome (SAHS) is a highly 
prevalence and under-diagnosed sleep-related breathing 
disorder in which the cessation of breathing occurs repeatedly 
during sleep. It can be caused due to an upper airway 
obstruction (obstructive sleep apnea), a neurological 
condition in which respiratory function ceases during sleep 
(central sleep apnea) and a combination of the two (mixed 
sleep apnea).  Obstructive sleep apnea is estimated to affect 
up to 4% of the adult population [1] and it is also prevalent in 
very young children, with obstructive sleep apnea estimated 
to affect between 1% and 4% of infants [2].   

Sleep-related breathing disorders have also been linked to 
several negative effects in the health and development of 
infants and young children, including behavioral effects such 
as depression, cognitive impairment and attention-
deficit/hyperactivity disorder [3]. It has also tentatively been 
linked to Sudden Infant Death Syndrome (SIDS) [4]. To 
exacerbate the problem, studies have shown that young 
children and infants tend to suffer more severe episodes of 
sleep apnea [5]. 

It is estimated that over 80% of cases of sleep-related 
breathing disorders go undiagnosed [6], primarily due to the 
limited availability and reliability of appropriate recording 
and monitoring equipment. The gold standard for the 
detection and diagnosis of sleep-related breathing disorders is 
an overnight in-hospital polysomnogram [7], in which a 
patient’s sleep is monitored through a multitude of sensors 
under controlled laboratory conditions.  

Unfortunately, the costs of performing such tests, which 
require expensive equipment and specially trained staff, 
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makes it prohibitively expensive for widespread diagnostic 
use and completely unavailable in many countries. The high 
degree of intrusiveness required by the sensors employed also 
limit the practicality and effectiveness of the technology. It 
often does not produce good results when used on young 
children and infants [8]. As a result, there is a clear need for a 
less invasive and lower cost means for detecting and 
diagnosing apnea events, especially in infants and young 
children for both diagnosis and therapeutic purposes.  

One such method of detecting apnea events is through 
monitoring the levels of oxyhemoglobin saturation (SaO2) in 
the patient as a desaturation may often result from an apnea 
event. Direct measurements of SaO2 are difficult to obtain 
directly, but pulse oximetry (SpO2) provides an indirect and 
rapid means of measuring SaO2 saturation [9]. 

This study seeks to determine the potential and 
effectiveness of using oximetry readings (SpO2), obtained 
from a minimally-invasive finger sensor, for the automated 
detection of apnea events in infants.  

Oximetry data has been studied as a potential indicator 
for apnea detection due to its low cost and ease of use. Cyclic 
desaturations in overnight oximetry recordings is a potential 
indicator of sleep apneas, but it appears to be limited by the 
negative predictive value  [10] as certain apnea events may 
not lead to an obvious and detectable desaturation [11]. As 
oximeter sensors are attached peripherally to the body, they 
are subject to noise resulting from motion and poor perfusion. 
However, the majority of this work has been performed on 
adult subjects, and far less research has been conducted on 
infants and young children, and as a result, this study 
investigates the classification properties of a single oximeter 
reading as an automated classifier specifically in infants. 

The study draws upon the polysomnogram recordings 
found inside the National Collaborative Home Infant 
Monitoring Evaluation (CHIME) database, collated by the 
National Institute of Health (NIH), which studied the 
effectiveness of home monitoring for apnea and bradycardia 
in infants [12]. 

II. METHODOLOGY 

A. Data 

The training and test data used in this study were obtained 
from the CHIME dataset. The CHIME database contains 
extensive recordings from home-based monitors for over 
1000 infants, ranging in age from newborns to approximately 
27 weeks.  
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Figure 1:  Oximetry-based pre-processing and feature extraction steps 

In addition to healthy infants, the subjects also included 
pre-term infants, infants who have lost sibling to SIDS, and 
infants exhibiting severe apnea events.  A breakdown of the 
genders and screening conditions for the subjects used in this 
study are presented in Table I. 

The CHIME database also includes 700 polysomnogram 
recordings, each containing data from 17 different sensors 
and recorded using a Healthdyne ALICE3 system. The 
collators of the CHIME database also scored these 
recordings, determining sleep states and arousal events. This 
sleep state data was provided in both a raw event format and 
in a smoothed format. 

TABLE I.  GENDER AND SELECTION CRITERIA BREAKDOWN 

Screening Criteria 
Gender 

Male Female Total 

Apnea of Infancy 29 30 59 

Healthy Term 39 33 72 

Premature 68 62 130 

Sibling of SIDS 33 34 67 

Total 169 159 328 

 
The recommendations of the Sleep Disorders Atlas Task 

Force of the American Sleep Disorders Association were 
used as a basis for identifying arousal events. The raw signals 
from the polysomnogram were scored by hand and assigned 
sleep states. A smoothing algorithm was then applied to the 
data.  

A strict protocol governing both the scoring and sleep-
state smoothing process ensured that the methodology was 
consistent across all subjects. 

The home recording data from the CHIME monitors 
contained six sensors, including an Aequitron 
ECG/Impedance channel and an Ohmeda pulse-oximeter. As 
this data does not include expert sleep scoring annotations, it 

was applicable, and only the polysomnogram data was used 
in this study.  

Both the arousal events and the sleep state data were used 
in the classification system, along with the raw oximetry data 
from the polysomnogram recordings. Of the 700 recordings 
available, only 328 subjects were found to contain complete 
recordings, annotations and sleep state data, all of which was 
required for training and testing purposes. As a result, only 
these records were used in the training and testing of the 
classifier. 

B. Pre-processing 

The physiological data, annotations and sleep state 
information are all located within different parts of the 
CHIME database and are linked by a uniquely assigned 
patient identifier. These three separate datasets were 
combined and processed as shown in Figure 1. The SpO2 
readings, smoothed sleep state data and arousal events were 
extracted from the CHIME database for each patient, and 
were time-aligned to 30-second epochs, based on the 
smoothed sleep state data.  

The sleep state data was also used to determine the first 
period of active sleep and the final waking event in order to 
discard the periods before and after the subject fell asleep. 
This step was performed to ensure that the classifier was only 
trained on periods during which the subject was in a state of 
sleep and to exclude any artifacts or false signals that may 
have arisen during the setup and teardown of the procedure. 

Arousal events were sorted according to their annotated 
type and were time-aligned to their appropriate epoch. In the 
case where apnea events spanned multiple epochs, all the 
affected epochs were marked as containing an epoch event.  

Arousal events consisted of central, obstructive and 
mixed apneas and hypopneas, and were labeled accordingly. 
Four different sleep states (wake, quiet, non-quiet and 
indeterminate) were assigned to each epoch using the 
smoothed sleep state data.  
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The oximetry data was recorded at a frequency of one 
reading per second. This data was extracted from the 
polysomnogram recordings data files and underwent a pre-
processing step which iterated over each epoch and removed 
any obvious artifacts.  

Any oximetry values below 65% saturation were 
automatically excluded, and all values representing a change 
in oxygen saturation greater than 4% per second were also 
excluded. These values were removed from their respective 
epochs, and the epoch itself was only discounted if it 
contained fewer than 30 values. 

In order to approximate the long-term trend within the 
SpO2 data, an estimated baseline value was calculated to a 
resolution of one second, in order to match that of the 
oximeter sensor. These values were then paired up with the 
corresponding SpO2 value. The baseline was generated using 
a 5-minute rolling average situated symmetrically about the 
respective SpO2 value. 

C. Feature Extraction 

There has been extensive research done on the subject of 
feature generation from pulse oximetry sensors. Most of 
these methods employ time-based statistical properties and 
are affected by limitations arising from physiological effects, 
variations in sensor location, and sensor specificity [13].  

Standard time-based features include statistical properties 
such as mean, median value, minimum value, threshold 
values and various inter-measurement interval calculations 
[14]. Many of these features suffer from a lack of 
standardized limits, which make comparisons with other 
results and studies difficult.  

A number of methods have been developed that explore 
approaches that break away from the standard time-based 
approach. These include frequency-based features [15], non-
linear features [16] and features based on multivariate 
regression [17].  

The bulk majority of the work has been performed on 
adult subjects and as a result, this study limits itself to well-
established, time-based features. Seven different time-based 
features were calculated for each epoch using both the pre-
processed SpO2 values and the associated baseline SpO2 
value.  

The features calculated for each epoch were as follows: 

1. Mean SpO2 Value over the epoch 

2. Minimum SpO2 value in the epoch 

3. Number of instances below 92% saturation 

4. Average absolute rate of change per second in the 
epoch 

5. The 3rd and 57th value in sorted SpO2 values 
(corresponding to a 5-95% spread) 

6. The number of times the baseline value exceeded the 
SpO2 value by at least 3% 

7. The number of times the SpO2 value exceeded the 
baseline SpO2 by at least 3% 

The baseline value attempts to track the long-term trend 
within the SpO2 data and the two baseline comparisons 
attempt to provide a proxy for detecting periods of above and 
below average saturation, which should represent re-
saturation and desaturation periods respectively. 

D. Classification 

A linear discriminant classifier was used as means for 

automatic classification. The training data was used to 

GHWHUPLQH� WKH� �k-FODVV� FRQGLWLRQDO� PHDQ� YHFWRUV� DQG� �-

common covariance matrix using 'plug-in' maximum 

likelihood estimates [18].  

E. Epoch-based Performance Measures 

The linear discriminant classifier was trained to 

discriminate between normal and any type of sleep 

disordered breathing (SDB). Each epoch was either labelled 

‘Normal’ or ‘SDB’ by the system and the corresponding 

expert value determined from the arousal data.  

 

Each epoch label by the system was compared to the 

“expert” data derived from the arousals information and the 

outcome determined as one of the following: 

 

x True positive (TP): an epoch is labelled as SDB by 
the arousal data and labelled as SDB by the system. 

x True negative (TN): an epoch is labelled as Normal 
by the arousal data and labelled as Normal by the 
system. 

x False positive (FP): an epoch is labelled as Normal 
by the arousal data and labelled as SDB by the 
system. 

x False negative (FN): an epoch is labelled as SDB by 
the arousal data and labelled as Normal by the 
system. 

The number of outcomes over all the epochs were calculated 

and used to form the two way confusion matrix shown in 

Table II.  

TABLE II.  AGE AND SELECTION CRITERIA BREAKDOWN 

  Actual 

 
Predicted 

 Normal SDB 

Normal TN FN 
SDB FP TP 

 

Using Table II the following performance measures were 

then calculated: 

 

x Specificity = TN/(TN+FP) 

x Sensitivity = TP/(TP+FN) 

x Accuracy = (TN+TP)/(TP+TN+FN+FP) 

E. Performance Evaluation 

In order to assess the performance of the classifier, a 
leave-one-out cross-validation scheme was used to assess the 
ability of the classifier to handle to independent data. Under 
this scheme, the classifier is trained on all but one recording, 
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which is then used to test the predictive nature of the 
classifier. The record used for testing is rotated through each 
record in the dataset, and the results from all the tests are 
combined to produce performance measures shown in Table 
II. 

F. Implementation 

The data handling, pre-processing and feature extraction 
methods were written in python and executed on an 80-node 
Rocks cluster running pyMPI. The classification and 
performance evaluation code was written in Matlab and run 
separately. 

III. RESULTS 

The results for the classifier are presented in Table III below. 

It must be stated that these results are the epoch-

classification results, and not AHI-classification results. 

Therefore these values are not directly comparable to many 

results presented in other papers. 

TABLE III.  RESULTS 

 
 

Specificity Sensitivity Accuracy 

7 SpO2 Features 68.5% 55.9% 68.0% 

 

The low sensitivity in the above results may have been 

caused by the fact that many apnoea events do not 

necessarily lead to a significant drop in oxyhemaglobin 

saturation levels. This has been indicated as a potential 

limiting factor of oximetry data and may have a more 

pronounced effect in infants, where oxygen regulation may 

exhibit a more dynamic nature.  

 

The results found in [19] can be used as a benchmark as it 

includes the intermediate epoch-classification results and 

utilised similar features and overall design.  The authors 

studied 125 adult patients and trained linear determinant 

classifiers on the oximetry and ECG data separately. The 

oximetry epoch classifier yielded a specificity of 94.8%, a 

sensitivity of 71.4% and an accuracy of 88.7%.   

IV. CONCLUSION 

The results of the classifier are somewhat lower than those 

obtained with adult patients, but it is clear that oximetry 

readings do possess apnea predictive capabilities, although it 

may require the addition of other sensor paradigms in order 

to compensate for the high negative predictive value of the 

oximetry data alone. 

 

The physiological differences between adults and infants 

may also affect the outcome of the classification technique 

as certain standard assumptions, such as epoch duration and 

threshold values, may need to be adjusted and tuned for use 

infant apnea detection. 

 

Additional features may also be required to better utilize the 

information present within the SpO2 data.  

V. FUTURE WORK 

It is expected that a multimodal approach, using additional 

minimally invasive sensors, will produce a more accurate 

and reliable automated apnea classification system.   
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