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Abstract - Biomedical data analytic system has played an 

important role in doing the clinical diagnosis for several decades. 

Today, it is an emerging research area of analyzing these big 

data to make decision support for physicians. This paper 

presents a parallelized web-based tool with cloud computing 

service architecture to analyze the epilepsy. There are many 

modern analytic functions which are wavelet transform, genetic 

algorithm (GA), and support vector machine (SVM) cascaded in 

the system. To demonstrate the effectiveness of the system, it has 

been verified by two kinds of electroencephalography (EEG) 

data, which are short term EEG and long term EEG. The results 

reveal that our approach achieves the total classification 

accuracy higher than 90%. In addition, the entire training time 

accelerate about 4.66 times and prediction time is also meet 

requirements in real time. 

I. INTRODUCTION  

LECTROCARDIOGRAM (ECG), Phonocardiogram 

(PCG), and Electroencephalography (EEG) always 

supply important health information of the patients for 

physicians. The analysis of these biomedical data [1-3] is very 

important for clinical research field with signal processing and 

data mining. Techniques such as adaptive filtering, spectrum 

estimation, compression, time series processing, feature 

selection and pattern classification are used to analyze the 

signals. As a result of improving the quality of care and 

reducing the cost, physicians decided to use these intelligent 

algorithms to provide a decision making system. Therefore, 

biomedical data analytic system recently is developed as an 

intelligent system to capture, transmit, calculate, and 

distribute results to physicians and patients. In other words, 

the system has been designed as a solution to make diagnosis 

and to ensure the goal of automatic systems can be operated in 

both a real-time and an interactive environment. 
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Electroencephalogram (EEG) signals record cerebral 

electric activities and detect events of epileptic seizures in 

patients with epilepsy, which afflicts approximately 1% of the 

population [4]. In general, seizures happen when clusters of 

brain neurons signal abnormally, which may temporarily 

cause anomaly in consciousness, behavior, movements, and 

actions of the patients. One way to analyze epilepsy is through 

recognizing EEG waveform of patients. EEG devices measure 

voltage changes from ionic current flows within the neurons of 

the brain [5], which shows temporal and spatial information of 

the brain, and is useful in the diagnosis of epilepsy. In addition, 

study [6] has also shown that EEG signals provide high 

sensitivity and specificity for the diagnosis of epilepsy. 

Recently, several studies [7-9] have proposed all kinds of 

algorithms for epileptic seizures using EEG signals. If 

successful, it would improve the quality of life and safety for 

patients with epilepsy. Thus, real-time EEG forewarning 

systems are emerging and necessary for seizure detection.  

The web-based epilepsy analytic system (EAS) architecture 

we proposed contains three major portions: the client site, the 

server site and the database as depicted in Fig. 1. The client 

site, which is accessed by physicians or healthcare 

practitioners, provides a friendly graphical user interface to 

interact with the server site and the database. Users from the 

client site must get authentication from the server site via 

session services to validate the security information stored in 

database. At the server site, it is embedded all the 

functionalities under the web services, such as data 

preprocessing feature selection, feature extraction, and 

classifier. The database stores medical data collected from 

hospitals the National Taiwan University Hospital (NTUH) in 

our approach. All components of the system use the extensible 

markup language (XML) format for exchanging messages, 

and the communication mechanism is based on a simple 

object access protocol (SOAP) over HTTP handled internally 

by the .NET environment [10-11]. In conclusion, users can 

easily get the results from EAS. 

 
Fig. 1 The system architecture of EAS 
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In the following sections of the paper, we first elaborate the 

design of the overall methods of biomedical data analytic 

system. Detailed descriptions of system components, data 

preprocessing, features selection, and classifiers are 

illustrated. In Section III, the system implementation is 

described. The complete biomedical data analytic results are 

provided in Section IV. Finally, the paper concludes in 

Section V. 

II. METHOD 

A. Data Preprocessing 

Infinite impulse response (IIR) is a property of signal 

processing systems [12]. IIR systems have an impulse 

response function that is non-zero over an infinite length of 

time. This is in contrast to finite impulse response (FIR) filters, 

which have fixed-duration impulse responses. The simplest 

analog IIR filter is an RC filter made up of a single resistor 

feeding into a node shared with a single capacitor. This filter 

has an exponential impulse response characterized by an RC 

time constant. Because the exponential function is asymptotic 

to a limit, and thus never settles at a fixed value, the response 

i s 

considered infinite.  

B. Wavelet Transform  

Among all the available signal decomposition tools, the 

wavelet transform (WT), which simultaneously extracts the 

time and frequency characteristics of a signal, is most suitable 

for extracting the spike-and-wave features [13]. The multi 

resolution property of the WT allows the decomposition of a 

signal into a number of scales, each scale representing a 

particular compositional part of the signals. A WT reduces the 

original signals into a few parameters, while maintaining the 

major characteristics for differentiating the type of EEG 

records. In addition, the inherent properties of WT, which was 

proven as an efficient tool for biomedical signal processing 

[14], include good time and frequency location and 

across-sub-band similarity. With these properties, WT is 

suitable for inconsistent frequency characteristics in different 

time frames. 

C. Feature Selection  

Genetic algorithm (GA) is one of the artificial intelligence 

methods, which designed to simulate the nature process of 

biological evolution to solve problems. GA, presented by Prof. 

John Holland [15], evolved through the processes of natural 

selection, recombination and mutation. GA simulates the 

nature cell, its main component elements are genes, 

chromosomes, group, and fitness function. It evolves through 

the best genetic chromosome found in the current generation 

of chromosomes; the next generation of chromosomes could 

be more adapted to the environment.  

To start from a population of randomly generated 

individuals represented in binary as strings of 0s and 1s. In 

each generation, the fitness of each individual in the 

population is evaluated and selected into the best one. In 

addition, the current populations can mutate, recombine and 

mate with each other to generate the next genetic generation. 

Then, the algorithm will check that if it achieves the 

termination condition or not. If this generation does not 

achieve the termination condition, otherwise, it will re-select 

the best individual which is used in the next iteration, as 

shown in Fig. 2. 

 
Fig. 2 Genetic Algorithm Flow Diagram 

D. Support Vector Machines 

The support vector machines (SVM) [16] map input feature 

vectors into a high dimensional space to realize a linear 

classification system. By feeding the algorithm with a set of 

training data, SVM can determine an optimal hyper-plane that 

minimizes the risks [17]. Note that it may not be useful to 

achieve high training accuracy. Therefore, a common way is 

to separate training data by mapping instances into high 

dimensional domain to build models. After data are mapped 

into a higher dimensional space, the number of variables 

becomes very large or even infinite. A typical approach to 

handle this difficulty is solving the dual problems shown in 

(1). 
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E. System Processing 

As described, a multi-class SVM classification with GA 

feature selection requests many standard binary SVM 

invocations for different parameters [18]. These SVM 

invocations combined with genetic algorithm selection are 

independent, and we can execute them in parallel. Hence, the 

system explores the parallelism of these SVM invocations to 

speed up the whole task. With the concept of cloud computing 

architecture, several types of modules are implemented, each 

of which is a standalone service to complete a designed 

subtask. A backend server can execute a mixture of different 

modules on demand. To simplify the design of this 
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architecture, currently, communications among modules are 

going through different task lists on the database. The central 

control unit would activate these modules which will query the 

job list from the database. These modules would execute the 

job in order from the list and return the results until the job list 

is empty. The database will store the results and the system 

server would do the statistic of the results when the job is 

finished.  

The following is the system architecture and the 

descriptions of major modules in Fig. 3. 

 
Fig. 3 The System Processing of EAS 

III. SYSTEM IMPLANTATION 

A. Data Acquisition 

We collected two sets of clinical data from subjects 

receiving routine short term EEG examinations and long-term 

EEG monitoring in the Department of Neurology, NTUH. The 

first EEG data set was acquired from short-term EEG 

recordings of routine EEG examinations. The subjects were 

divided into two groups. In short term EEG, we included EEG 

data from 13 participants (5 women and 8 men), whose ages 

ranged from 20 to 89 years. The second EEG data set was 

acquired from five of those patients of epileptic. In long term 

EEG, we included EEG data from 5 participants (2 women 

and 3 men), whose ages ranged from 34 to 81 years. Thus, in 

this paper, we used the long term EEG as a validation set and 

tested only the recordings from the five epileptic patients 

using the model of short term EEG. 

These EEG records are transformed from analog signals to 

digital signals by instrument manufacture. All the EEG data 

were preprocessed by eliminating artifacts, and the sample 

rate is about 200Hz, record channels are 16 channels. In 

addition, the EEG signals were digitally filtered by IIR, and 

extracted 1700 features [1] after 4 levels wavelet transform. 

B. System Implementation 

1) Home page 

Home page is a major part of EAS that it is designed to 

allow users to train EEG data and predict the results. Users 

can adjust the required parameters and methods of SVM and 

GA on this page. After prediction, the system will show the 

results of the accuracy. In this page, we also provide the 

document of guide to introduce how to use the system. 

2) EEG Monitoring Page 

Fig. 4 shows the interface of EEG monitoring page which 

accquires EEG data by AJAX from database, and illustrates 

figures by javascript. Users can review the classification of 

EAS and annotation to determine if the classification is 

correct or not. Once the review is finished, the accumulation 

of feedback will retrain the new EEG classfication model. The 

functions are explained as below: 

EAS can display both unipolar and bipolar EEG signals. 

Channel names are shown in area (1). Area (2) plots the 

selected EEG record, and the pink area displays the annotated 

location of (4). Area (3) is the list of patients¶ records that has 

been analyzed in EAS. While users confirm the selected event 

results had been classified to wrong classes, users can click the 

option buttons to give a new annotation in the area (5). The 

modified annotations will be included in the next model 

training. Finally, users can navigate 10 seconds backward and 

forward of EEG charts by clicking the buttons in area (6). In 

summary, the EAS is an automatic EEG reading system that 

helps doctors to make clinical decision in real time. 

 
Fig. 4 Interface of EEG Monitoring Page 

IV. RESULTS AND DISCUSSION 

The EAS is written in C# language running on .NET 

platform. The functions provided from the LIBSVM 2.6 C# 

edition are modified as the classification web services. In 

addition, other various optional functions are also offered, 

such as genetic algorithm. In order to fulfill the flexibility, the 

system is implemented with modular characteristic which 

allows easy incorporation of new methods. There are two 

types of EEG data tested in the following statement. 

1) Short Term EEG Data 

The annotated short term EEG records we obtained 

includes 1939 2-second epochs of normal activity, 436 

2-second epochs of spike activity, and 444 2-second epochs of 

seizure activity. Spikes and seizure do not occur frequently 

out of the norm. However, these two waveforms are of upmost 

detection priority and therefore more samples are needed for a 

strong prediction model. Half of the 2-second epochs are 

taken for training, and the other half are taken for prediction. 

In total, our system currently can output 1700 features for each 

2-second epoch. We use these 1700 features together to obtain 

the results from the EAS (Table I). 

2) Long Term EEG Data 

In order to validate that our EEG classification framework 
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can be generalized to data from different acquisition machines, 

we trained the classifiers using the entire short term EEG and 

tested the trained classifiers using long term EEG as a 

hold-out data set. The accuracies of short term EEG data were 

83.02% (inter-ictal detection rate) and 100% (seizure 

detection rate). The testing results of using the hold-out long 

term EEG data are also given in Table I. The inter-ictal 

detection rate is 91.18% and the seizure detection rate is 

99.22% which are close to the results of short term EEG data. 

It means that the features are useful and stable in classifying 

epileptic and nonepileptic patients. In addition, Table I also 

presents the comparisons with other literatures that both the 

accuracies of inter-ictal and seizure are higher than the others. 
TABLE I RECOGNITION RATE OF EEG DATA 

 Normal Inter-ictal Seizure 

Short Term EEG Data 93.7% 83.0% 100% 

Long Term EEG Data 92.8% 91.1% 99.2% 

[19] N/A 76 % N/A 

[20] N/A N/A 92.2% 

 

3) System Performance 

The EAS was built up on HiCloud 15 severs, which 

specifications are as follows: CPU: 1.0 GHz, RAM: 8GB, 

HDD: 100GB. Although GA-based feature selection is 

effective, however, it required 18.55 hours on one server. The 

time was reduced dramatically to 3.96 hours when fifteen 

generic servers were used as backend servers in the proposed 

framework. Fig. 5 shows the required time when different 

numbers of backend servers were used. As the number of 

backend servers increased, the overhead on the database and 

mutual communication between modules also increased. 

When more than 5 backend servers were used, the speedup 

was slow down. It means that the time consuming of overhead 

overtake the saving time of paralleling computing piece by 

piece. In addition, we also tested that the entire 10-second 

EEG perditions of data preprocessing, feature extraction to 

classifier needs 0.68 second to meet requirements in real time. 

 
Fig. 5 The Training Time of EAS with Different Number of Servers 

V. CONCLUSION 

Our approach proposed a cloud computing system (EAS) 

for neurologists to read EEG records and help them to make 

clinical decisions. The EAS was tested using real data from 

NTUH and obtained good preliminary results. It reveals that 

the overall classification accuracy of the EAS is higher than 

90%. In addition, the speedup of the entire training time is 

about 4.66 times, and prediction time also meets the real time 

requirements. 
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