
  

 

Abstract— Electromyography (EMG) pattern-recognition 

based control strategies for multifunctional myoelectric 

prosthesis systems have been studied commonly in a controlled 

laboratory setting. Most previous efforts concentrated on 

evaluating the performance of EMG pattern-recognition 

algorithms in identifying one signal movement at a time.  

Therefore, the current motion classification methods would be 

limited with the difficulties in identifying the combined 

upper-limb motion classes that are commonly required in 

performing activities daily. In this paper, four improved 

classifier training schemes were proposed and investigated to 

address the difficulties mentioned above. Our preliminary 

results showed that three of the four proposed training schemes 

could improve the classification performance. The average 

classification accuracies of the three methods were 75.10% ± 

9.71%, 76.95% ± 8.02%, and 77.56% ± 6.55% for the 

able-bodied subjects, and 63.38% ± 7.51%, 62.55% ± 9.06%, and 

62.50% ± 9.36% for the transradial amputees, respectively. 

These results suggested that the proposed methods could 

provide better classification performance in identifying the 

combined motions than the current methods. 

I. INTRODUCTION 

Upper-limb prostheses are very essential for transradial 
amputees to improve their life quality, and many studies have 
been focused on the development of more intuitive and natural 
control of prostheses. As a kind of non-invasive signal, 
electromyogram (EMG) is considered suitable for prosthesis 
control. Several appreciable results on myoelectric upper-limb 
prostheses have been reported [1–4], where the transradial 
amputees could do some upper-limb motions with prostheses 
according to their mind through a pattern recognition method. 
However, as limited by the classifier, only basic movements 
could be conducted and the classification accuracy would 
decrease obviously with the increased number of motion 
classes if the electrode number was fixed. Several possible 
improvements were suggested, one of which was to study the 
relationship between the EMG and the moment & angle 
information of the related arm joint, and process the results 
through the Mirrored Bilateral method [5–7]. However, this 
approach was limited due to some disadvantages such as the 
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lack of enough degree of freedom (DOF). Another approach 
was to regard a forearm motion as the combination of hand 
motion and wrist motion, and improve the degree of intuition 
by selecting suitable features [8]. But in this way the number 
of motion classes was not enough. 

Considering that people often conduct combined motions 
such as a wrist pronation together with a hand closing to hold a 
bottle and drink water, a simultaneous control of different 
joints (DOFs) for multifunctional transradial prostheses is 
necessary. In this paper, four new schemes for classifier 
training were presented, and some primary results were 
discussed. 

II. METHODS 

A. Subjects and Data Acquisition 

Four able-bodied subjects (marked as AB, 3 male and 1 
female) and three unilateral transradial amputees (marked as 
TR, 2 male and 1 female) were recruited (Table I). The 
protocol of the research was approved by the Institutional 
Review Board of the Shenzhen Institutes of Advanced 
Technology, Chinese Academy of Science. All subjects gave 
written informed consent and provided permission for 
publication of photographs with a scientific and educational 
purpose. 

A wireless signal acquisition system (Delsys Inc. Boston, 
USA) with 16 bipolar EMG electrodes (15 electrodes for some 
amputees in case of no-enough residual limb) was used to 
acquire EMG signals with a sampling rate of 1 kHz. For intact 
arms, 8 electrodes were placed on the proximal forearm, 4 on 
the wrist, and 4 between the proximal forearm and the wrist, as 
shown in Fig. 1(a). For amputated arms, 8 electrodes were 
placed on the proximal forearm, 4 (3 for some amputees) on 

TABLE I.  DEMOGRAPHIC DATA OF THE SUBJECTS 

 

Subject Age 

 

Gender 

Amputated 

or 

Experiment 

Arm 

Residual 

Forearm 

Length 

Number 

of 

Electrodes 

AB1 24 Male Right \ 16 

AB2 23 Male Right \ 16 

AB3 24 Male Right \ 16 

AB4 26 Female Right \ 16 

TR1 25 Male Left 18 cm 15 

TR2 43 Female Right 

5.5 cm 

(Residual 

Palm) 

16 

TR3 23 Male Right 12.5 cm 15 

Motion Recognition for Simultaneous Control of Multifunctional 

Transradial Prostheses 

Naifu Jiang, Lan Tian, Peng Fang, Member, IEEE, Yaping Dai, and Guanglin Li, Senior Member, IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1603



  

 

(a)                                                           (b) 

Figure 1.   Position of 16 bipolar EMG electrodes (15 electrodes were used 
for amputees in some cases) on (a) an intact arm and (b) an amputated arm. 

the distal end, and 4 between the proximal forearm and the 
distal end, as shown in Fig. 1(b). The recorded EMG signals 
were filtered with a bandpass of 20-450 Hz, processed with a 
data acquisition card (USB-6218, National Instruments Corp.), 
and then transferred to the computer. 

Each subject was asked to accomplish 25 combined 
forearm motions in a random order following a video 
instruction. EMG data were recorded in three consecutive 
trials, where in each trial every motion class was repeated four 
times (twice for training and twice for testing) and held for 4 s. 
There was a rest of 4 s between neighboring data acquisition 
of every motion class, and a rest of 5 min between neighboring 
trials. 

25 combined forearm motion classes were specified in the 
experiments and each one consisted of a hand motion class 
and a wrist motion class, i.e. the subject did a hand motion 
simultaneously with a wrist motion. The five basic hand 
motion classes were no-movement (NM), 
hand-closing/-opening (HC/HO), and key-/chuck-grip 
(KG/CG). The five basic wrist motion classes were 
no-movement (NM), wrist-pronation/-supination (PRO/SUP), 
and wrist-flexion/-extension (WF/WE). All combined motion 
classes were listed in Table II.  

B. Classification Based on Pattern Recognition 

According to the previous studies [1–4, 9], four 
time-domain features (mean absolute value (MAV), number 
of zero-crossings (ZC), number of slope sign changes (SSC), 
and waveform length (WL)) were applied in this work for the 
classification calculation. Besides, the length of analysis 
window was 150 ms with an overlap of 100 ms. 

All classifiers were obtained from training data and tested 
by testing data. In this work, there were an Original Single 
Classifier training scheme and four improved schemes. The 
pattern recognition algorithms for the calculation of the 
improved classifiers were the Linear Discriminant Analysis  

TABLE II.  25 CLASSES OF COMBINED FOREARM MOTIONS 

Hand 

Motion 

Wrist Motion 

NM PRO SUP WF WE 

NM NMNM NMPRO NMSUP NMWF NMWE 

HC HCNM HCPRO HCSUP HCWF HCWE 

HO HONM HOPRO HOSUP HOWF HOWE 

KG KGNM KGPRO KGSUP KGWF KGWE 

CG CGNM CGPRO CGSUP CGWF CGWE 

(LDA) and the Support Vector Machine (SVM) [10]. All 
classifiers were built as follows: 

1) Original Single Classifier: There were 9 basic motion 
classes, including no-movement (NM), hand-opening 
(HO), hand-closing (HC), key-grip (KG), chuck-grip 
(CG), wrist-pronation (PRO), wrist-supination (SUP), 
wrist-flexion (WF), and wrist-extension (WE). The LDA 
was used as the pattern recognition algorithm to make the 
classifier. 
2) Improved Single Classifier: Compared with the 
Original Single Classifier, the number of motion classes 
was increased. There were 25 combined motion classes 
applied in this classifier, as shown in Table II. 
3) Simple Double Classifier: One classifier was obtained 
based on the data of five basic hand motion classes while 
the other one was obtained based on the data of five basic 
wrist motion classes. The final result would be achieved 
according to the results of these two classifiers by 
applying the testing data from 25 combined motions. 
4) Single-Stage Parallel Double Classifier Based on 
Superimposed Data: Different from the classifier in 3), 
the data used here were mixed from 25 combined 
motions. For instance, combined motion classes of 
hand-opening were HONM, HOPRO, HOSUP, HOWF 
and HOWE. After data processing, several data matrices 
could be obtained: 

,1 ,2 ,[ , ,..., ]HONM honm honm honm nX x x x              (1) 

,1 ,2 ,[ , ,..., ]HOPRO hopro hopro hopro nX x x x            (2)  

sup,1 sup,2 sup,[ , ,..., ]HOSUP ho ho ho nX x x x            (3)  

,1 ,2 ,[ , ,..., ]HOWF howf howf howf nX x x x               (4) 

,1 ,2 ,[ , ,..., ]HOWE howe howe howe nX x x x                (5) 

      where n was the label number of electrodes. The 
component of each matrix was from the processed data of 
corresponding electrodes during training. Meanwhile, 
each component was also a matrix consisted of four 
column vectors. The method to superimpose the data was 
as follows: 
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(6)  

and therefore the combined data of hand-opening could 
be obtained. Similarly, the combined data of all motion 
classes could also be achieved and used to calculate the 
hand classifier and wrist classifier. 
5) Two-Stage Sequential Double Classifier: The first 
stage was to train a hand (wrist) classifier with the method 
in 4). The second stage was to build and select one of the 
five corresponding wrist (hand) classifiers referring to the 
Simple Double Classifier training scheme, according to 
the classification results of the first stage. The final result 
was attained according to the results of these two stages. 
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In addition, the training data and testing data were both 
from 25 combined motion classes. 

III. RESULTS AND DISCUSSION 

A.  Original Single Classifier 

As shown in Fig. 2, with the Original Single Classifier, a 
combined motion class was judged incorrectly as a hand 
motion class, a wrist motion class, or the no-movement motion 
class. The correct classification could not be achieved since 
the Original Single Classifier was formed from only 9 basic 
motion classes. For the able-bodied subjects and amputees, the 
average classification accuracies were less than 50% both for 
hand and wrist. Besides, for the amputees, the classification 
accuracy of hand was less than that of wrist. This classifier 
training scheme should be improved in order to achieve better 
classification performance. 

B. Comparison of Different Improved Classifier Training 

Schemes Based on the LDA Algorithm 

With the LDA algorithm, classification accuracies of 
classifiers could be obtained, as shown in Fig. 3. The 
Single-LDA and Seq-LDA-LDA (wrist-hand) showed the 
highest average accuracies for both the able-bodied subjects 
and the amputees. For the able-bodied subjects, the average 
accuracy was 77.56% ± 6.55% and 73.96% ± 7.63%, 
respectively. By applying the t-test to the significance 
analysis, it was found that the former scheme was better than 
the latter one (p<0.01). For the amputees, the difference was 
insignificant (p>0.05), and the average accuracy was 62.50% 
± 9.36% and 63.38% ± 7.51%, respectively. Meanwhile, the 
Simple-Double-LDA showed the lowest average accuracy of 
32.26% ± 4.93% for the able-bodied subjects and 24.13% ± 
6.07% for the amputees. In addition, its difference from all 
other classifiers’ average accuracy was significant (p<0.01).  

 

(a) 

 

(b) 

Figure 2.   Hand and wrist classification accuracies using the testing data of 
the combined motion classes for (a) the able-bodied subjects and (b) the 
amputees.The pair of hand and wirst histogram was random and no-movent 
motion class was ignored. 

 
(a) 

 
(b) 

Figure 3.   Classification accuracies of different schemes based on the LDA 

algorithmfor (a) the able-bodied subjects, and (b) the amputees. 

C. Comparison of Different Improved Classifier Training 

Schemes Based on the SVM Algorithm 

Similar as the results of section B, the 
Simple-Double-SVM showed the lowest average accuracy of 
28.80% ± 4.52% for the able-bodied subjects and 19.18% ± 
4.54% for the amputees, as shown in Fig. 4. Besides, in 
comparison with all other classifiers’ average accuracy, the 
difference was significant (p<0.01). The best schemes were 
the Seq-SVM-LDA (hand-wrist) and the Seq-SVM-LDA 
(wrist-hand). 

 

(a) 

 

(b) 

Figure 4. Classification accuracies of different schemes based on the SVM 

algorithm for (a) the able-bodied subjects, and (b) the amputees. 
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D. Final Result 

In summary, improved training schemes were selected and 
compared, as shown in Fig. 5. For the able-bodied subjects, 
the classification algorithm would have a greater impact on the 
classification accuracy (p<0.01) than the order of hand and 
wrist in two stages, according to the Two-Stage Sequential 
Double Classifier training scheme. However, for the 
amputees, the result was completely opposite. The possible 
reason was that for the amputees, more information of the 
wrist motion in the residual limbs was reserved than that of the 
hand motion, but for the able-bodied subjects, most 
information of both hand motion and wrist motion in the intact 
limb were retained. 

Furthermore, the best schemes for the able-bodied 
subjects and for the amputees were different. For the 
able-bodied subjects, the Seq-SVM-LDA (H-W), 
Seq-SVM-LDA (W-H), and Single-LDA showed the highest 
classification accuracies of 75.10% ± 9.71%, 76.95% ± 8.02%, 
and 77.56% ± 6.55%, respectively, and for the amputees, the 
Seq-LDA-LDA (W-H), Seq-SVM-LDA (W-H), and 
Single-LDA showed  the highest classification accuracies of 
63.38% ± 7.51%, 62.55% ± 9.06%, and 62.50% ± 9.36%, 
respectively. There was no significant difference among these 
three schemes (p>0.05) both for the able-bodied subjects and 
for the amputees.  

Based on the above results,  it could be concluded that the 
Improved Single Classifier training scheme and the 
Two-Stage Sequential Double Classifier training scheme had 
the best performance among the schemes discussed in this 
work, and might overcome the disadvantages of the Original 
Single Classifier. 

Future work would focus on the improvement of the 
classification accuracy by selecting new features or making 
new schemes. 

 
(a) 

 
(b) 

Figure 5.   Comparison of several main schemes for (a) the able-bodied 

subjects and (b) the amputees, where * means p<0.05, ** means p<0.01. 

APPENDIX 

TABLE III.  SEVERAL ABBREVIATIONS 

Abbreviation Full Name 

Single-LDA Improved Single Classifier using LDA 

Simple-Double-LDA Simple Double Classifier using LDA 

Mix-Double-LDA 
Single-Stage Double Classifier Based on 

superimposed Data using LDA 

Seq-LDA-LDA 
(wrist-hand)/(W-H) 

Two-Stage Sequential Double Classifier which 

applying the LDA to the wrist classification in 

the first stage and then LDA to the hand 

classification in the second stage 

Seq-SVM-LDA 

(hand-wrist)/(H-W) 

Two-Stage Sequential Double Classifier which 

applying the SVM to the hand classification in 

the first stage and then LDA to the wrist 

classification in the second stage 
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