
  

� 

Abstract Pattern recognition myoelectric control shows great 

promise as an alternative to conventional amplitude based 

control to control multiple degree of freedom prosthetic limbs.  

Many studies have reported pattern recognition classification 

error performances of less than 10% during offline tests; 

however, it remains unclear how this translates to real-time 

control performance.  In this contribution, we compare the 

real-time control performances between pattern recognition 

and direct myoelectric control (a popular form of conventional 

amplitude control) for participants who had received targeted 

muscle reinnervation.  The real-time performance was 

evaluated during three tasks; 1) a box and blocks task, 2) a 

clothespin relocation task, and 3) a block stacking task.  Our 

results found that pattern recognition significantly 

outperformed direct control for all three performance tasks.  

Furthermore, it was found that pattern recognition was 

configured much quicker.  The classification error of the 

pattern recognition systems used by the patients was found to 

be 16% ±(1.6%) suggesting that systems with this error rate 

may still provide excellent control. Finally, patients 

qualitatively preferred using pattern recognition control and 

reported the resulting control to be smoother and more 

consistent.     

 

I. INTRODUCTION 

Pattern recognition has been proposed as an alternative to 

conventional amplitude-based control, also referred to as 

direct control, for several decades.  The primary benefit of 

pattern recognition is it provides an intuitive mapping of 

physiologically appropriate muscle contractions to the 

corresponding prosthesis movements.  This is achieved by 

using a classifier to discriminate electromyographic (EMG) 

signal features measured from an arbitrary number of 

residual limb muscles into a discrete number of movement 

classes [1]. Several studies are available in the literature that 

quantify the performance of  pattern recognition control 

systems in terms of classification error, with many 

implementations producing classification errors of less than 

10% [2].  However, the relationship between classification 

error and functional performance remains unclear.  
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Furthermore, pattern recognition systems have not yet been 

accepted by the clinical community leading to questions  

regarding a need to change focus in the direction of research 

efforts towards systems better suited for simultaneous 

multifunction control [3].   

Conventional amplitude based control has received wide-

spread clinical adoption.  The most popular implementation, 

termed direct control, requires placement of electrode pairs 

over agonist-antagonist muscles [4]. The muscles must be 

independently controlled and the resulting EMG signals free 

from muscle crosstalk. Estimates of the EMG amplitudes are 

then compared to preset thresholds to determine what user 

intends to make a motion. Direct control is usually limited to 

controlling a single degree of freedom due limited available 

control muscles on the residual limb. A mode switch may be 

used to control additional degrees of freedom, however, this 

adds cognitive burden to the user and reduces the 

intuitiveness of the overall system.     

Targeted muscle reinnervation (TMR) is a surgical 

technique that restores physiologically appropriate 

electromyographic (EMG) signals to high-level upper-limb 

amputee patients. The TMR procedure is growing in 

popularity and excellent functional outcomes have been 

achieved direct control techniques [5]. Pattern recognition 

has been suggested as an alternative control method because 

the reinnervation results in rich EMG signal patterns that can 

be reliably and voluntarily elicited by the patients [6].  

There have been few previous studies that have directly 

compared the performance of pattern recognition to direct 

control [7, 8]. The first study found improved performance 

using pattern recognition control but was very limited 

because only control subjects were tested within a virtual 

environment.  Preliminary functional comparisons between 

direct control of single degree of freedom hand with passive 

wrist rotation to a six degree of freedom multifunction arm 

system showed better performance using the direct control 

system in a single subject case study [8].  It was suggested 

that the patients limited experience with pattern recognition, 

compensatory body movements when using the direct 

control system, and desire to demonstrate control of all 

degrees of freedom of the device may have biased the results 

in favor of direct control.  Subsequent testing of transradial 

amputee subjects have found that mixed results when 

variables were controlled for [9].       

In this contribution, we directly compare the functional 

performances of TMR amputee patients controlling a 

physical prosthesis between pattern recognition to direct 

control during three simple performance tasks.  Our findings 
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suggest that pattern recognition provides significantly 

improved results for this amputee subpopulation.     

II.   METHODOLOGY 

Four individuals (1 male with a shoulder disarticulation, 2 

males and 1 female with a transhumeral amputation) who 

received TMR surgery more than 3 years prior to the 

experiment completed the study. All patients had extensive 

at-home experience using a conventional myoelectric-

controlled prostheses. The patients reported on average, 

using the prosthesis daily for approximately two hours.   The 

subjects also had significant within-lab experience 

(estimated at tens of hours over the last three years) using 

pattern recognition-controlled prostheses.   

As a result of all the TMR surgery, all patients had 4 

independent control sites (2 reinnervated sets of 

agonist/antagonist muscle pairs) over which 4 bipolar pairs 

of EMG electrodes could be placed for direct control  as 

described by the clinical electrode configuration in [10]. 

These physiologically appropriate reinnervated sites were 

used to control elbow flexion/extension and hand open and 

close degrees of freedom. All patients also had control of 

wrist supination and pronation. The method of wrist rotation 

control was similar to their conventional myoelectric 

prosthesis (selected by the clinical team responsible 

constructing the patients’ daily use prosthesis). One 

transhumeral patient had a 5th independent control site 

resulting from his TMR surgery which he used to control 

wrist rotation; a ‘fast’ muscle contraction (short, high 

amplitude contraction) caused the wrist to pronate and a 

‘slow’ muscle contraction (slower, graded muscle 

contraction) caused the wrist to supinate.  Two patients used 

a mode switch, implemented through a mechanical switch or 

muscle co-contraction, so they could switch from opening 

and closing the hand (shoulder disarticulation patient) or 

from flexing and extending the elbow (transhumeral patient) 

to pronating and supinating the wrist. The final transhumeral 

patient used a linear transducer (i.e. body-driven cable) to 

operate the wrist. The direct control system gains and 

thresholds [4] were configured by a certified prosthetist to 

match the settings used with the patients’ daily use 

prosthesis.   

Four additional pairs of electrodes were placed on the 

patients’ residual limbs to cover the areas between the TMR 

control sites for the pattern recognition control system. The 

control system was comprised of time-domain features and 

auto-regressive coefficients classified by a linear 

discriminant analysis classifier. This feature set and 

classifier combination has been well researched and shown 

to classify EMG data from TMR locations with low 

classification errors [6]. Features were extracted from 250 

ms analysis windows and classifications were updated at 

every 50 ms [11]. The velocity of the desired movement was 

computed using a simple proportional control algorithm 

smoothed by a decision-based velocity ramp to condition the 

output of the pattern recognition system [12].  The pattern 

recognition was trained using a previously described auto-

calibration routine during which patients mimicked pre-

programmed movements of the prosthesis [13].  The routine 

was configured such that approximately 6 seconds of EMG 

data were collected for each movement. The entire pattern 

recognition algorithm was implemented on a custom 

embedded system and mounted on the prosthesis.    

 
 
Figure 1. TMR patient with a transhumeral amputation 

performing clothespin relocation task using the embedded pattern 

recognition control system. 

 

Patients completed three different real-time performance 

tests with each system: 1) a blocks and box test (number of 

1-inch blocks moved over a barrier in two min) [5], 2) a 

block stacking test (number of blocks stacked in three min) 

[12], and 3) a clothespin relocation test (time to move three 

clothespins) [14].  Three trials of each test were completed. 

Tests were performed in two separate, randomized-order 

sessions (conventional control or pattern recognition). 

Following testing, subjects provided qualitative feedback 

about each control system. The classification error rate was 

also computed for three of the four patients.  In addition, the 

time taken to configure each control system was recorded.    

A statistical analysis was completed using ANOVAs with 

the real-time performance metrics as the response variables, 

control type and trial number as fixed factors, and subject as 

a random factor.     

III. RESULTS 

Patients showed significant (ANOVA, p<0.05) 

performance improvements across all tasks while using the 

pattern recognition compared to conventional control 

(Figure 2). The trial number was not found to be significant. 

Approximately 15 minutes was required to configure the 

prosthesis control system for direct control in comparison to 

approximately 5 minutes for pattern recognition. This time 

did not include time taken for electrode placement as the 

locations had been previously identified. Patients moved 

40% more blocks and the stacked towers were 59% higher 

using the pattern recognition control system.  The clothespin 

relocation times task was completed in 25% less time when 

using the pattern recognition control system. The average 
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classification error rates for the pattern recognition systems 

were 16.3% (standard deviation1.6%).   

 

 
 

Figure 2. Average performance measures for patients using 

conventional control and pattern recognition. Asterisks indicate 

significant differences (p<0.05) between control conditions.  
 

Qualitatively, subjects preferred using the pattern 

recognition control system. They reported it to be more 

intuitive to control, smoother to operate with better 

proportional control, and more consistent in its performance.  

They also reported that the conventional control setup 

performed equivalently to their daily use prosthesis.  

IV. DISCUSSION 

The TMR procedure has resulted in significant and 

clinically relevant performance improvements when used 

with direct myoelectric control systems [14]. Furthermore, 

TMR patients have successfully demonstrated use of pattern 

recognition controlled advanced prosthesis prototypes [15]. 

However, this is the first study to directly compare the 

performance of pattern recognition systems to direct control 

systems using a physical prosthesis with TMR patients.  The 

results suggest that pattern recognition significantly (p<0.05) 

outperforms direct control for all of the performance tasks 

tested in this experiment. Perhaps equally as important in 

clinical deployment of pattern recognition systems is the 

indication of faster clinical configuration. This has far-

reaching effects in the patients’ rehabilitation process and 

the practioners economic planning; an increased proportion 

of funded time can be dedicated to functional development 

instead of system configuration.  

The relationship between pattern recognition classification 

error and functional performance remains unclear.  While 

early work found only a weak correlation between 

classification error and functional performance [16], more 

recent studies have found a stronger correlation between 

these variables during experiments conducted within virtual 

environments [11, 17]. This work demonstrates that systems 

with classification errors of 16% result in control systems 

that outperform direct control.  The classification accuracy 

for one of the subjects could not be computed because the 

file was not properly saved by the microcontroller.  This 

anomaly was corrected for the other three subjects.  Less 

accurate systems may still provide acceptable control. Many 

such feature set and classifier combinations are capable of 

generating these accuracies [2].   

Current implementations of pattern recognition systems 

are limited to seamless sequential control to achieve tasks 

that require movements of more than one degree of freedom.  

Some preliminary work has shown that pattern recognition 

systems may be extended simultaneously classify multiple 

degree of freedom movements [18].  Other signal processing 

approaches [19, 20] have been developed to specifically 

allow for simultaneous and proportional control of 

movements but have yet to be thoroughly tested with 

amputee patients using physical prostheses. In fact, TMR 

with direct control allows for simultaneous control of the 

elbow with a wrist or hand [14].  Even though patients could 

simultaneously control these movements with direct control, 

our results showed that the seamless sequential pattern 

recognition system provided better functional results.  Thus, 

while multifunction simultaneous and proportional control 

systems are worthy end-goals, the limitation of pattern 

recognition to seamless sequential control should not be 

perceived as a limiting factor in its clinical adoption. 

Pattern recognition systems do not directly provide a 

proportional control estimate.  Rather, a secondary algorithm 

is used to compute estimate the proportional control speed. 

Proposed secondary algorithms may be a simple as using the 

average power across each channel [21], or more advanced 

using the predicted class as prior information allowing for 

automatic and class specific normalization of each 

movement prosthesis movements [22]. Qualitatively, all 

patients tested in our functional tests perceived the 

proportional control of the pattern recognition system to be 

better than that of the direct control.  They reported the 

control to be ‘smoother’ and ‘more consistent’ allowing 

them to operate the prosthesis with more confidence.    

It should be noted the performance tests may not be 

representative of activities of daily living; however, we feel 

they are more representative of functional performance than 

virtual environment tasks. Furthermore, the tasks were 

selected because they require use of all three degrees of 

freedom that were under voluntary control of the patient 

(clothespin relocation task), and required both gross (box 

and blocks) and fine (block stacking task) control of 

movements.  Each task required that subjects use the 

prosthesis in closed loop with visual feedback. Further work 

is required to perform clinically validated outcome measures 

for both direct and pattern recognition control.         

V. CONCLUSION 

Pattern recognition performance has traditionally been 

quantified in terms of classification error but few studies 

have quantified, or even demonstrated, functional control 

using pattern recognition controlled devices. There are many 

reasons for this including: ease and cost efficiency of 

performing experiments within virtual environments, 

convenience of testing with control subjects, and no 

commercially available of pattern recognition controlled 

prostheses.  In this contribution, we showed that pattern 

recognition systems significantly outperformed direct 

control systems for TMR amputees when completing simple 

performance tasks required using a multi-degree of freedom 

prosthesis.  Furthermore, pattern recognition systems were 
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significantly faster to configure and patients preferred using 

the pattern recognition systems despite inherent limitations 

associated with pattern recognition. Thus, we conclude that 

pattern recognition should be considered as a viable clinical 

alternative until more advanced simultaneous proportional 

control systems are developed.  

VI. ACKNOWLEDGEMENTS 

The authors would like to acknowledge the Center for 

Bionic Medicine Electronics team for constructing the 

embedded pattern recognition system and Dr. Laura Miller, 

CP for configuring the conventional myoelectric control 

systems. 

V. REFERENCES 

 
[1] L. Hargrove, K. Englehart, and B. Hudgins, "A Comparison 

of Surface and Intramuscular Myoelectric Signal 

Classification," IEEE Transactions on Biomedical 

Engineering, vol. 54, pp. 847-853, 2007. 

[2] E. Scheme and K. Englehart, "EMG Pattern Recognition for 

the Control of Powered Upper Limb Prostheses:  State-of-

the-Art and Challenges for Clinical Use," Journal of 

Rehabilitation Research and Development, vol. 48, 2011. 

[3] N. Jiang, S. Dosen, K.-R. Muller, and D. Farina. (2012) 

Myoelectric Control of Artificial Limbs - Is There a Need to 

Change Focus? IEEE Signal Processing Magazine. 148-152.  

[4] T. W. Williams, "Control of Powered Upper Extremity 

Prostheses," in Functional Restoration of Adults and 

Children with Upper Extremity Amputation, R. H. Meier and 

D. J. Atkins, Eds., ed New York, NY: Demos Medical 

Publishing, 2004, pp. 207-224. 

[5] L. A. Miller, K. A. Stubblefield, R. D. Lipschutz, B. A. Lock, 

and T. A. Kuiken, "Improved Myoelectric Prosthesis Control 

Using Targeted Reinnervation Surgery: A Case Series," 

Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on [see also IEEE Trans. on Rehabilitation 

Engineering], vol. 16, pp. 46-50, 2008. 

[6] P. Zhou, M. M. Lowery, K. B. Englehart, H. Huang, G. Li, L. 

Hargrove, J. P. Dewald, and T. A. Kuiken, "Decoding a New 

Neural-Machine Interface for Control of Artificial Limbs," J 

Neurophysiol, vol. 98, pp. 2974-82, Aug 29 2007. 

[7] L. Hargrove, E. Scheme, K. Englehart, and B. Hudgins, 

"Multiple Binary Classifications via Linear Discriminant 

Analysis for Improved Controllability of a Powered 

Prosthesis," IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 18, pp. 49-57, 2010. 

[8] L. Miller, K. Stubblefield, and S. Finucane, "Outcome 

Measure Results Of Pattern Recogntion Control of a 

Multifunction Hand-Wrist System: A Case Study," in 

Myoelectric Controls Symposium, Fredericton, NB, Canada, 

2011. 

[9] L. Miller, K. Stubblefield, S. Finucane, R. Lipschutz, and T. 

Kuiken, "A Comparison Of Direct Control And Pattern 

Recognition Control Of A Seven Degree-of-Freedom Hand 

Wrist System," in ISPO, Hyderabad, India, 2013. 

[10] H. Huang, P. Zhou, G. Li, and T. A. Kuiken, "An Analysis of 

EMG Electrode Configuration for Targeted Muscle 

Reinnervation Based Neural Machine Interface," IEEE 

Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 16, pp. 37-45, 2008. 

[11] L. H. Smith, L. Hargrove, B. A. Lock, and T. Kuiken, 

"Determining the optimal window length for pattern 

recognition-based myoelectric control: balancing the 

competing effects of classification error and controller 

delay," IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 19, pp. 186-192, 2011. 

[12] A. Simon, L. Hargrove, B. A. Lock, and T. Kuiken, "A 

decision-based velocity ramp for minimizing the effect of 

misclassifications during real-time pattern recognition 

control," IEEE Transactions on Biomedical Engineering, vol. 

58, pp. 2360 - 2368, 2011. 

[13] A. Simon, B. A. Lock, and K. Stubblefield, "Patient Training 

for Functional Use of Pattern Recognition-Controlled 

Prostheses," Journal of Prosthetics and Orthotics, vol. 24, 

pp. 56-64, 2012. 

[14] L. A. Miller, R. D. Lipschutz, K. A. Stubblefield, B. A. Lock, 

H. Huang, T. W. Williams, 3rd, R. F. Weir, and T. A. 

Kuiken, "Control of a six degree of freedom prosthetic arm 

after targeted muscle reinnervation surgery," Arch Phys Med 

Rehabil, vol. 89, pp. 2057-65, Nov 2008. 

[15] T. A. Kuiken, G. Li, B. A. Lock, R. D. Lipschutz, L. A. 

Miller, K. A. Stubblefield, and K. B. Englehart, "Targeted 

muscle reinnervation for real-time myoelectric control of 

multifunction artificial arms," JAMA, vol. 301, pp. 619-28, 

Feb 11 2009. 

[16] B. A. Lock, K. Englehart, and B. Hudgins, "Real-Time 

Myoelectric Control in a Virtual Environment to Relate 

Usability vs. Accuracy," in MyoElectric Controls 

Symposium, New Brunswick, Fredericton, 2005, pp. 122-

127. 

[17] A. Young, L. Hargrove, and T. Kuiken, "Improving 

Myoelectric Pattern Recognition Robustness to Electrode 

Shift by Changing Interelectrode Distance and Electrode 

Configuration," IEEE Transactions on Biomedical 

Engineering, vol. 59, pp. 645-652, 2012. 

[18] A. Young, L. H. Smith, E. Rouse, and L. Hargrove, "A New 

Hierarchical Approach for Simultaneous Control of Multi-

Joint Powered Prostheses," in Proceedings of the 4th IEEE 

RAS/EMBS International Conference on Biomedical 

Robotics and Biomechatronics, Rome, Italy, 2012. 

[19] J. Nielsen, S. Holmgaard, N. Jiang, K. Englehart, D. Farina, 

and P. Parker, "Simultaneous and Proportional Force 

Estimation for Multifunction Myoelectric Prostheses Using 

Mirrored Bilateral Training," IEEE Transactions on 

Biomedical Engineering, vol. 58, pp. 681-688, 2011. 

[20] D. Yatsenko, D. McDonnall, and K. S. Guillory, 

"Simultaneous, Proportional, Multi-axis Prosthesis Control 

using Multichannel Surface EMG," in 29th Annual 

International Conference of the IEEE Engineering and 

Medicine in Biology Society, Lyons, France, 2007, pp. 6133-

6136. 

[21] A. Simon, K. Stern, and L. Hargrove, "A Comparison of 

Proportional Control Methods for Pattern Recognition 

Control," in 33rd International Conference of the IEEE 

Engineering in Medicine and Biology Society, Boston, MA, 

USA, 2011, pp. 3354-3357. 

[22] L. Hargrove, G. Li, K. Englehart, and B. Hudgins, "Principal 

Components Analysis Preprocessing for Improved 

Classification Accuracies in Pattern-Recognition-Based 

Myoelectric Control," IEEE Trans Biomed Eng, vol. 56, pp. 

1407-1414, 2009. 

 

 

1602


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

