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Abstract—Powered lower limb prostheses, capable of 

multiple locomotion modes, are being developed for 

transfemoral amputees. Current devices do not seamlessly 

transition between modes such as level walking, stairs and 

slopes. The purpose of this study was to develop an intent 

recognition system and test its performance across five 

different modes. A Dynamic Bayesian Network (DBN) was used 

for classification of neural and mechanical signals while four 

amputees completed a circuit containing level-walking, ramp 

ascent, ramp descent, stair ascent and stair descent. Our results 

indicate that transitional and steady-state stair steps had a high 

recognition rate (>99%), while ramp steps were significantly 

more difficult to classify (p<0.01) (13.7% error on transition 

steps and 1.3% on steady-state steps). With all five modes 

trained into the same system, the transitional error rate was 

11.3%. Transitional error could be reduced by 31% by training 

the ramp ascent mode as level walking, and 92% by training 

both ramp ascent and descent as level walking. This is a viable 

solution when the level-walking mode can accommodate ramp 

modes which is currently the case with the ramp ascent. The 

high recognition rates for recognizing stairs shown in this study 

demonstrates the potential for an intent recognition system 

using neural information to allow amputees to naturally 

transition between locomotion modes on powered prostheses.  

I. INTRODUCTION 

N the last decade, there have been large advances in lower 

limb prosthetic technology including onboard computers 

[1] and motorized joints [2, 3]. With more advanced 

componentry, these devices are better able to aid amputees 

on more difficult terrain allowing for reciprocal gait for stair 

ascent and descent [4]. To fully use these new capabilities, 

methods for transitioning between locomotion modes are 

necessary. Currently, transfemoral prosthesis users must 

press a button or perform a specific lower limb movement to 

signal to their prosthesis that they want to change between 

certain  modes such as transitioning from walking to stair 

ascent. A smarter system might allow for these transitions to 
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be automatic (no button press), seamless (no stopping) and 

natural (no unnatural user movements).  

To address these issues, intent recognition techniques 

using pattern recognition algorithms are being developed [5, 

6]. One study [5] demonstrated high recognition rates using 

mechanical sensors within a powered prosthesis to 

differentiate between standing, walking and sitting modes. 

Other studies [6, 7] conducted on mechanically passive 

devices have shown potential for using electromyography 

(EMG) from residual limb muscles to perform intent 

recognition over different terrain types. To the authors’ 

knowledge, no studies have demonstrated an intent 

recognition system for a powered knee-ankle prosthesis that 

works across multiple locomotion modes.  

While both EMG and mechanical sensors are potentially 

useful for intent recognition, the statistics (or features) of 

these signals change throughout gait cycle [8].  Therefore, it 

may be beneficial to capture the sequence or the time history 

of the signals over time. One efficient algorithm that uses 

time history is a Hidden Markov Model. It combines current 

observation information with past information in the form of 

priors from the previous time step to predict a discrete 

output variable. Hidden Markov Models assume stationary 

signals, and thus a Dynamic Bayesian Network (DBN) [9] 

was used which is similar to a Hidden Markov Model, but 

relaxes the stationary assumption. DBNs are useful for 

integrating time series information over time. The DBN was 

constructed to have a different underlying sensor model 

based on gait phase. This type of classification using time 

history was implemented in order to utilize the information 

throughout the gait cycle for locomotion mode classification.  

The goal of this study was to develop an intent 

recognition system for transfemoral amputees across 

multiple ambulation modes (level-ground walking, ramp 

ascent/descent, and stair ascent/descent). First, intent 

recognition was evaluated for the stair trials and the ramp 

trials separately. Then, classification performance for 

separating both stairs and ramps were evaluated and the 

benefits and disadvantages of each are discussed. For all 

these analyses, an intent recognition strategy using a DBN 

was used to incorporate time history information along with 

a combination of EMG and mechanical sensor information. 

EMG information precedes movement and may be helpful 

for predicting upcoming transitions [6], while mechanical 

information reacts to movement and is stable over time and 

may help to stably classify the steady-state locomotion. 
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II. METHODS 

A. Experimental Protocol 

Four transfemoral persons with a transfemoral amputation 

(three males and one female) completed the following 

experiment that had been approved by the Northwestern 

University Institutional Review Board. Nine muscles sites 

on the residual limb of the amputee were recorded by 

surface EMG including: semitendinosus, biceps femoris, 

tensor fasciae latae, rectus femoris, vastus lateralis, vastus 

medialis, sartorius, adductor magnus, and gracilis. Three of 

the amputees wore custom skin-fit suction sockets with 

embedded stainless-steel dome electrodes placed over the 

muscle sites. One amputee wore reusable, low-profile, self-

adhesive silver-coated carbon electrodes (Arrowhead 

Medical Resources) underneath his liner and home socket. 

On two of the subjects, a single EMG channel was lost or 

discarded due to noise. 

All amputees wore a powered knee and ankle prosthesis 

designed by collaborators at Vanderbilt University [10]. The 

prosthesis was attached to the amputee’s socket and aligned 

by a certified prosthetist at the Rehabilitation Institute of 

Chicago. Each patient had experience on the robotic leg 

walking on level ground, walking on a ramp with a 10 

degree slope, and ascending and descending a set of stairs 

using reciprocal gait (see Fig. 1.) The impedance parameters 

for the knee and ankle were empirically tuned for each 

locomotion mode as described previously [11]. State 

machine based control that has been presented previously 

was used and impedance parameters for the robotic leg for 

walking [5], stairs [4], and ramps [12] were tuned to each 

patient. 

  
Fig. 1. Transfemoral patient walking on the Vanderbilt powered knee/ankle 

prosthesis for stair climbing (left) and ramp descent (right). 

Patients completed 20 repetitions of two circuits. In the 

first circuit, the patient walked on level ground, transitioned 

to ramp ascent, transitioned to level walking, turned around, 

walked back to the ramp, transitioned to ramp descent, 

transitioned to level walking, continued level walking and 

stopped to end the trial.. The second circuit was the same as 

the first except the ramp was replaced with a four–step 

staircase. An experimenter transitioned the prosthesis 

between the different locomotion modes at heel contact or 

toe off. 

B. Signal Processing and Classification 

EMG signals were sampled at 1000 Hz and mechanical 

sensors were sampled at 500 Hz. A custom built EMG 

system was used to record EMG which included a hardware 

band-pass filter between 20 and 420 Hz. Thirteen 

mechanical sensors (six axis inertial measurement unit, axial 

load, and position, velocity, and motor current for both the 

knee and ankle) along with the nine EMG channels were 

used for classification. The load cell was low pass filtered at 

20 Hz. The locomotion modes and gait cycle phases were 

also recorded. 

Data were segmented into analysis windows of 300 ms at 

eight different points throughout the gait cycle: heel strike, 

25/50/75% of stance phase, toe off, and 25/50/75% of swing 

phase. Mean, standard deviation, maximum and minimum 

values were extracted as features from each window for the 

mechanical sensors. Mean absolute value, zero crossings, 

slope sign changes, waveform length and the first two 

autoregressive coefficients of a sixth order autoregressive 

model were extracted for EMG signals [6]. The full set 

features from the EMG and mechanical sensors were 

concatenated and used for classification.  

Time history based classification was implemented using 

a dynamic Bayesian network (DBN) [9]. A Two-Timeslice 

bayesian network was used which means that at any point in 

time, the output class can be calculated from current 

observations and the priors from the previous step. This is 

the Markov assumption which states that future decisions are 

conditionally independent of past states given the present 

state. 

The DBN used Bayes law to calculate the maximum a 

posteriori (MAP) estimate (Eq. 1), which was the class with 

the maximum posterior probability  ( | ⃗ )). The MAP 

estimate is a combination of past information in the form of 

a prior and current information (the likelihood). The prior 

( ( )) was the probability based on past information of 

being in any of the classes.  Thus the MAP estimate was 

calculated from Eq. 2. where  ( ⃗ | ) is the likelihood 

probability,  ( ⃗ ) is the observational probability, and  ̂    

is the MAP estimate. 

 ̂          ( ( | ⃗ ))        (
 ( ⃗ | ) ( )

 ( ⃗ )
)    ( ) 

The priors for each step were calculated based on equation 

2, which is a matrix multiplication of the previous step’s 

posterior probabilities ( ( | )   ) and a transitional 

probability matrix ( ). The transitional probability matrix 

( ) was learned from the training data and describes the 

probability of transition between any two activity modes.  
 ( )   ( | )           ( ) 

At any given time t, the current features and gait phase 

were known. The gait phase determined the feature model 

used at any time step. Eight models were used corresponding 

to the pre-defined eight points during the gait cycle. At any 

given time, a model calculated a set of likelihood 

1588



  

probabilities from the feature information, and prior 

probabilities were propagated from the previous time point. 

Posterior probabilities were calculated based on Eq. 1. The 

class with the maximum posterior probability was chosen for 

that time step. The posterior probabilities were then 

multiplied by the transitional probability matrix (Eq. 2.) and 

propagated to the next time step sequentially in time through 

the gait cycle. This allowed for information to be propagated 

throughout the gait cycle to increase the information 

available at the critical transition points (heel contact and toe 

off). 

C. Performance Evaluation 

Classifier evaluation was performed using leave-one-out 

cross validation with all circuit trials collected for each 

patient. For overall system evaluation, errors were divided 

into transitional error and steady-state error. Transitional 

error was the percentage of transition steps misclassified, 

while steady state error was the percentage of steps not 

occurring at a transition that were misclassified. While 

multiple points in the gait cycle were used to implement the 

time history strategy, classifier performance was evaluated 

exclusively in terms of decisions at heel contact and toe off 

as these are where transitions between modes are initiated.  

Intent recognition was tested on the ramp trials and 

separately on the stairs trials to evaluate performance for 

each ambulation mode. Next the performance of an intent 

recognition system with all five locomotion modes (level-

walking, ramps and stairs) was evaluated. To further reduce 

recognition errors, two additional configurations were tested. 

Since the prosthesis response and impedance parameters 

during ramp ascent was very similar to the prosthesis 

response during the level-walking, the first of these 

configurations combined these two modes into one class (i.e. 

ramp ascent steps were relabeled as level-walking). The 

second configuration evaluated  was suitable to be used in 

combination with a separate slope estimator that has been 

presented in previous work [12] with the Vanderbilt 

knee/ankle prosthesis. For this configuration both the ramp 

ascent and descent steps were relabeled as the level-walking 

mode; allowing the intent recognition algorithm to only have 

to separate three locomotion modes (level walking, stair 

ascent and stair descent). Statistical analysis was performed 

for both transitional and steady-state error separately using a 

1-way ANOVA with subject as a random factor and 

locomotion mode as a fixed factor.  

III. RESULTS 

A. Analysis of Ramps and Stairs Separately 

The intent recognition performance was evaluated 

separately for ramps and stairs and results showed that stairs 

had significantly lower (p<0.05) error rates for both 

transitional and steady-state steps than ramps (Fig. 2). For 

the ramp intent recognition system 33% of the 

misclassifications were between level walking and ramp 

ascent, 64% were between level walking and ramp descent 

and 2% were between ramp ascent and descent. For stair the 

stair intent recognition system, 83% of the misclassifications 

were between level walking and stair ascent, while 17% of 

the misclassifications were between level walking and stair 

descent. Error rates were higher during transition steps than 

during steady-state steps (Fig. 2). Ramp transition steps (i.e. 

steps between level ground and ramp ascent or descent) were 

nine times more likely to have a misclassification than a 

steady-state step. 

B. Effect of Classifier Configuration 

By training the intent recognition system to identify all 

five locomotion modes (Fig. 3), overall error rates were 

similar to the ramp classification rate shown in Fig. 2. When 

the system was trained to recognize four modes (i.e. ramp 

ascent and level walking combined into one class), error 

rates for transitional steps were significantly (p<0.05) 

reduced, and error rates for steady-state steps were reduced, 

but not significantly (Fig. 3). Finally, when the system was 

trained to recognize only three modes (i.e. ramp ascent, 

ramp descent and level walking combined into one class), 

the transitional error was significantly reduced by 92% 

(p<0.01) and steady-state error was reduced by 86% 

(p<0.01) compared to classifying all five locomotion modes 

 
Fig. 2. A) Transitional and B) steady-state error for the separate ramp 

and stair intent recognition systems. Data are averages of four subjects 
and error bars represent +/- 1 SEM. 
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Fig. 3: A) Transitional and B) steady-state error for three different 

classifier configurations. Configurations included all modes as separate 

classes (Five Modes), ramp ascent relabeled as level walking (Four 
Modes), and both ramp ascent and ramp descent relabeled as level 

walking (Three Modes). Data are averages of four subjects and error 

bars represent +/- 1 SEM. 
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as separate classes. This indicated that a large portion of the 

errors for both transitional and steady-state were due to ramp 

misclassifications and only a small amount were due to stair 

misclassifications.  

IV. DISCUSSION 

This study found that ascending and descending ramp 

were more difficult to classify than ascending and 

descending stair for both transition and steady-state steps 

(Fig. 2). It is likely that this was because ramp steps have 

signal patterns that are more similar to level-walking steps, 

while stair steps have patterns that are different from both 

level-walking or ramp steps.  

The intent recognition system trained with all five 

locomotion modes as separate classes had relatively high 

(11.3%) transitional step errors even when using a 

combination of neural and mechanical sensor information. 

By relabeling the ramp ascent mode to level walking, 

transitional error and steady-state error was reduced by 31%. 

With this configuration, the intent recognition system would 

keep the prosthesis in level-walking mode during ramp 

ascent. For the four amputees tested in this study, this four-

mode control scheme is valid since the tuned impedance 

parameters were very similar between level-walking and 

ramp ascent modes for each subject. Thus a configuration 

with ramp ascent trained as walking would not likely be 

noticed by the amputees and be implemented with fewer 

overall errors. The three-mode system resulted in the least 

amount of errors; relabeling both ramp ascent and descent to 

level walking reduced transitional step errors to 0.9% and 

steady-state errors 0.3%.  This effectively removed all ramp 

misclassifications without increasing stair misclassification 

rate which is beneficial, but at the cost of only being able to 

recognize ramp modes as level walking. This three-mode 

strategy could be used in combination with a slope estimator 

such as the one presented previously by Sup [12] by adding  

an accelerometer to the foot. While the ramp ascent and 

level-walking modes have similar impedance parameters, a 

slope estimator is necessary as the ramp descent mode is 

substantially different. Without a slope estimator, some 

amputees might find it uncomfortable to be in the level-

walking mode when descending ramps. Another possible 

solution for the three-mode system might include adding a 

second stage classifier that separates out desired ramp 

mode(s) when the level-walking class is chosen. This 

strategy would take advantage of the low stair error rates 

while possibly lowering the ramp error rates. 

All classifier configurations in this study used a 

combination of EMG data from patients’ residual limbs and 

mechanical sensor information from the powered prosthesis. 

A fusion of multiple data sources such as this may be useful 

for intent recognition [6], and future work will consider the 

impact of each type of sensor on recognition accuracy. 

Additionally, an intent recognition system that incorporated 

the time history of each input signal was used to fuse 

information over the course of the gait cycle. The time 

history information was included in a DBN which combined 

information in a way that is similar to a hidden markov 

model or kalman filter in that relevance prior information is 

fused with current information to make a more likely 

prediction. This is the first time that these methods have 

been put together for powered prosthesis intent recognition. 

Future studies will include real-time testing to determine the 

viability of different intent recognition configurations and 

strategies for powered prosthesis control.  
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