
  

  

Abstract—Traditional brain machine interfaces for control of 

a prosthesis have typically focused on the kinematics of 

movement, rather than the dynamics. BMI decoders that 

extract the forces and/or torques to be applied by a prosthesis 

have the potential for giving the patient a much richer level of 

control across different dynamic scenarios or even scenarios in 

which the dynamics of the limb/environment are changing.  

However, it is a challenge to train a decoder that is able to 

capture this richness given the small amount of calibration data 

that is usually feasible to collect a priori.  In this work, we 

propose that kinetic decoders should be continuously calibrated 

based on how they are used by the subject.  Both intended hand 

position and joint torques are decoded simultaneously as a 

monkey performs a random target pursuit task.  The deviation 

between intended and actual hand position is used as an 

estimate of error in the recently decoded joint torques.  In turn, 

these errors are used to drive a gradient descent algorithm for 

improving the torque decoder parameters. We show that this 

approach is able to quickly restore the functionality of a torque 

decoder following substantial corruption with Gaussian noise. 

I. INTRODUCTION 

any brain machine interfaces (BMIs) are used to 

control physical systems like a prosthesis. In these 

BMIs it is traditional to first decode either an 

‘intended’ position or velocity signal and then submit this 

intended state to a control law (e.g., a PD controller) that 

attempts to match this state through the appropriate selection 

of joint torques [1-2]. This approach suffers from three 

limitations. First, it entirely reactive and thus its response is 

delayed: an error must exist between the desired and actual 

states in order for the controller to respond. Second, it does 

not take into account the dynamics of interaction between the 

arm and the environment, like those that occur when picking 

up a heavy object. A BMI should enable the subject to 

anticipate such forces proactively by providing control 

channels to influence these forces directly. Finally, the 

decoders used to predict the ‘intended’ movements are 

trained in a single context making them incapable of 
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adapting to novel environments without subjecting the users 

to a recalibration session. 

 One approach to mitigate these concerns is a hybrid 

control scheme that pairs a feedforward controller capable of 

tracking the desired trajectory without delay with a feedback 

controller that corrects for any inaccuracies in the realized 

movement trajectory resulting from a mismatch between the 

feedforward model and the true dynamics. We have recently 

demonstrated viability of the hybrid approach for using 

BMIs to control robot arms [3]. Our hybrid neural decoder 

estimates “intended” arm positions/velocities and joint 

torques from recent MI activity. The decoded torque is 

interpreted as a feed-forward control signal, while the 

decoded position is interpreted as a reference signal for a 

proportional-derivative (PD) feedback controller.  

 Here, we present an online-adaptive, hybrid neural 

decoder that may be capable of improving task performance 

when placed in novel dynamic scenarios. We extend our 

previous work by adapting the torque decoder as it is being 

used to command an arm in a reaching task. Inspired by the 

Feedback Error Learning (FEL) model of Kawato and Gomi 

[4], we interpret position errors (differences between actual 

and decoded position) as 1) an error signal on which the PD 

controller will operate and 2) an estimate of recent errors 

made by the torque decoder. We use this latter error signal to 

drive a quasi-supervised learning process that alters the 

parameters of the torque decoder. We show that this 

approach is able to restore the functionality of a torque 

decoder after it has been corrupted with Gaussian noise. 

II. METHODS 

A. Behavioral Task 

One adult male rhesus macaque was trained to sit in a 

primate chair and to control a cursor in a two–dimensional 

workspace using the KINARM, a two-link robotic 

exoskeleton (BKIN Technologies, Kingston, ON). The 

animal’s arm was abducted 90 degrees and rested in the 

exoskeleton such that all movements were made within the 

horizontal plane. Visual feedback of the monkey’s 

movements was available via a cursor projected onto a 

horizontal projection screen which blocked direct vision of 

the arm. The position of the cursor was controlled by one of 

two sources: either the position of the monkey’s hand or the 

endpoint of a simulated robot that was controlled by a BMI.  

The animal performed a random target pursuit (RTP) task 

Online Adaptive Decoding of Intended Movements with a Hybrid 

Kinetic and Kinematic Brain Machine Interface 

Aaron J. Suminski, Member, IEEE, Andrew H. Fagg, Member, IEEE, Francis R. Willett, Matthew 

Bodenhamer, and Nicholas G. Hatsopoulos 

M 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1583



  

requiring repetitive movements of the visual cursor (6 mm 

diameter) to square targets (2.25cm
2
). Targets appeared at a 

random location within the workspace (14 by 13.2 cm), and 

each time the cursor acquired one, a new target appeared in a 

random location. In order to complete a successful trial and 

receive a juice reward the monkey was required to 

sequentially acquire between two and seven targets. A trial 

was aborted if any movement took longer than 5s. 

B. Hybrid BMI 

Here, we utilized a BMI that decoded both kinematic and 

kinetic signals. The specific details of this implementation 

have been described previously [3].  In brief, the Hybrid 

BMI (Fig. 1) converts neural activity into elbow and 

shoulder joint torques in order to drive the movement of a 

two-link virtual arm that simulates the dynamics of the 

monkey’s arm and exoskeleton. The hand position of the 

simulated arm (XC) is updated based on the current joint 

angles, velocities, and accelerations of the virtual arm and 

the joint torques generated by the BMI. The torques, τ, are a 

weighted combination of the torques generated by the 

individual components of the BMI: 

pdttk τττ += * , (1) 

where τt is the prediction of the monkey’s intended shoulder 

and elbow joint torques made by the torque decoder and τpd 

is the torque generated by the position-derivative controller, 

and kt is the gain coefficient to control the mixture of the 

component torques.  

 

Figure 1: The Hybrid BMI uses neural activity recorded from the primary 

motor cortex to drive the simulated arm in Cartesian space which the 

monkey then uses to hit targets. XD and XC are two-element column vectors 

containing the X and Y components of the endpoint of the simulated arm, ε 

is a two-element column vector containing the X and Y components of an 

error signal, τt, τpd and τ are two-element column vectors containing joint 

torque terms, and kt, is a scalar gain term. The torque output of the PD 

controller, τpd, is used as an error signal to modify the torque decoder 

(dashed arrow). 

 The proportional (position) and derivative (velocity) 

controllers function together to move the simulated arm 

towards the position decoder’s prediction of the monkey’s 

intended hand position, XD. The position controller uses the 

error signal, ε = XD-XC, to generate τp. Similarly, the 

velocity controller generates joint torques proportional to the 

current angular velocities of the simulated arm. The 

individual gain parameters of the PD controller were tuned in 

simulation prior to the experiments. 

The position and torque decoders, implemented as Wiener 

Filters, predict the monkey’s intended hand position, XD, and 

the monkey’s intended joint torque, τt. In our approach, an 

estimate of “intended” hand position/joint torque is 

reconstructed from a linear combination of binned spike 

counts from the available neurons.  We employ a history of B 

= 20 bins of ∆t = 50ms each for every neuron, giving the 

Wiener Filters access to a total of one second of neural 

spiking history.  Specifically, signal k (X or Y hand position, 

or elbow or shoulder torque) at discrete time bin t, is 

reconstructed as follows: 

( ) )(tFWtS kk = , (2) 

where 
kW is the set of parameters for filter k, and )(tF is a 

column vector of size BxC that contains the spike counts for 

C neurons and B time bins (covering time [t-(B-1)∆t,…,t]). 

As in our previous work, the coefficients for the decoder are 

solved for analytically using ridge regression that trades 

prediction accuracy on the training set for a smoother 

prediction surface [3].   

C. Feedback Error Learning 

 In hybrid control, any failing of the feedforward 

controller, the torque decoder in our implementation, to 

estimate the correct feedforward torques manifests itself as a 

position (and velocity) error that accumulates slowly with 

time. Hence, a positional error that is observed at time t, can 

be due to a feedforward torque error that was made prior to t.  

The Feedback Error Learning assumption addresses this 

credit assignment problem by assigning some responsibility 

for positional/velocity errors at time t over the recent 

window of torque estimates. Specifically, we can describe a 

squared torque error for a single joint and for time t  as: 
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 By the FEL assumption: 

)()()( , ttnttntFW kpdkk ττ ≈∆−−∆− . (5) 

As a result, the update to the estimate of filter parameters 

based on a single observation is: 

( )∑
=
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0

, )()1(ρτα ,(6) 

where α  is a learning rate parameter.  
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 The weighting function ρ(n)∝exp(-βn) grants most of the 

responsibility for the current positional error to the most 

recently decoded torque, and exponentially less 

responsibility to decoded torques made in the past. This 

formulation also has the advantage that the above sum can be 

computed incrementally. 

D. Experimental Procedure 

Prior to the experiments, the monkey performed a visual 

observation task where he held his arm still while observing 

movements of the cursor hitting targets. These movements 

were recorded previously while the monkey performed the 

RTP task with his own arm.  During the observation period, 

we recorded four minutes and twenty seconds (5200, 50ms 

bins) of spiking activity and movement data to train the 

decoders. The torques used to train the decoder were 

estimated from the observed arm trajectories and an inverse 

dynamics model that included both the KINARM and the 

monkey arm. During the experiments, the monkey used a 

BMI to move the cursor (via the simulated arm) in the same 

task based on the activity of an ensemble of recorded motor 

cortical neurons.  

We performed a single experiment (a total of 3 sessions) 

to investigate the ability of the Adaptive Hybrid BMI to 

improve BMI performance after an unexpected external 

perturbation to the decoder. The experiment consisted of two 

conditions arranged in an ABA paradigm. In the first 

condition the monkey moved the cursor using an unperturbed 

version of the Hybrid BMI in order to establish a 

performance baseline. Next, we corrupted the torque decoder 

by adding zero-mean, unit variance, noise drawn from a 

Gaussian distribution to its coefficients. During the second 

condition, we enabled the adaptation algorithm and 

evaluated its ability restore the functionality lost after the 

decoder corruption.  Following an extended learning period, 

the adaptation algorithm was disabled and the original torque 

decoder was restored. 

E. Electrophysiology 

The monkey was chronically implanted with a 100-

electrode microelectrode array (Blackrock Microsystems, 

Inc., Salt Lake City, UT) in MI contralateral to the arm used 

for the task. The electrodes on the array were 1.0 mm in 

length and were coated with iridium oxide. The neural 

activity used to train the decoders and operate the BMI was 

comprised of single and multiunit spiking events. Only 

waveforms that crossed a user defined threshold and sorted 

online using a time-amplitude technique were used for real-

time decoding. All of the surgical and behavioral procedures 

were approved by the University of Chicago Institutional 

Animal Care and Use Committee and conform to the 

principles outlined in the Guide for the Care and Use of 

Laboratory Animals. 

F. Kinematic Analyses 

We used two kinematic measures to evaluate the effect of 

the decoder adaptation algorithm on BMI performance. The 

normalized time-to-target metric is defined as the time 

difference between consecutive target hits divided by the 

Euclidean distance between the targets. The normalized path 

length metric is defined as the length of the path the cursor 

traverses between consecutive targets divided by the 

Euclidean distance between those targets.  

III. RESULTS 

We sought to demonstrate that our Adaptive Hybrid BMI 

was capable of restoring BMI performance following an 

unexpected external perturbation to the coefficients of the 

torque decoder. The monkey was readily able to acquire 

targets using the Hybrid BMI prior to corruption of the 

torque decoders (Fig. 2, negative time points). Corruption of 

the torque decoder parameters (Fig. 2, vertical dashed line at 

t =0) resulted in functional paralysis of the BMI as the 

monkey was unable to modulate the cursor position and 

acquire targets. Upon enabling of the adaptive algorithm 

(Fig. 2, 2
nd

 dashed vertical line), normal cursor movement 

was restored within 10 seconds. The monkey was able to 

acquire targets at a similar rate to the pre corruption period, 

approximately 20 seconds after the adaptive algorithm was 

enabled. 

We were interested in characterizing how the adaptive 

BMI was able to compensate for a perturbation that 

eliminated the monkey’s ability to effectively control the 

BMI cursor. Fig. 3 shows time-resolved and average 

performance data for a representative experiment.  During 

the pre-learning period (Fig. 3, blue), BMI performance 

reached a steady state that was disrupted by the decoder 

corruption (Fig. 3, Learning On). Early in the learning period 

(Fig. 3, gray) performance degraded and then gradually 

improved over the course of many trials until adaptation was 

turned off (Fig. 3, Learning Off). The time for the cursor to 

reach target and path length were significantly reduced 

during the learning period (two sample t-test, p < 0.01 and p 

< 0.05, respectively). There was no difference between the 

performance in the late learning phase and the pre/post 

learning phases. 

IV. DISCUSSION 

 Brain-machine interfaces that provide a patient with direct 

access to the kinetics of prosthetic limb control could 

increase the range of tasks that are feasible to learn and 

perform. This increase in the richness of control also comes 

with an increase in the complexity of the decoder above that 

of kinematic decoders. The Feedback Error Learning 

approach to updating the torque decoder on-the-fly enables 

the decoder to integrate experience from the dynamic 

scenarios that are actually encountered by the patient.  

Hence, all dynamic scenarios do not have to be anticipated a 

priori during a pre-use calibration phase. 

Our results demonstrate that the FEL approach allowed 

the monkey to regain control of the BMI after a catastrophic 

failure due to external perturbation of the torque decoders. 
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This is especially true in first 30 seconds after the adaptation 

algorithm was enabled. What is less clear is the contribution 

of the adaptive decoder to the performance gains observed 

over longer time courses like that shown in Fig. 3. Consistent 

with previous reports [5], we expect that both the adaptive 

algorithm and the monkey would contribute to performance 

improvement on longer timescales. Future work will attempt 

to tease apart the individual contributions of the monkey and 

the algorithm in order to optimize BMI performance. 

 Online adaptive decoders have previously been proposed 

[5-6]. Here, kinematic decoders are updated on-the-fly based 

on differences between decoded velocity and an expectation 

of what that velocity should be given knowledge of the goal. 

However, as we move toward in situ adaptive decoders, the 

intended goal of movement may not be know explicitly.  

Instead, our learning algorithms must infer this intent in 

other ways. The FEL approach does just this. Errors in the 

torque decoder are estimated, in part, from the decoded 

position. One limitation, however, is that we assume that the 

position decoder itself is of high quality and does not require 

continued adaptation.  This is one subject of future work. 

 The decoder corruption paradigm that we have used in this 

work is a stand-in for changes that might occur over a time-

course of days or weeks in the behavior of individual 

neurons or a drift in the set of neurons that might be 

available to the decoder. Our experimental results suggest 

that the FEL approach could aid a dynamic decoder to 

compensate for these more realistic changes.  Furthermore, 

we have shown in simulation that FEL can compensate for 

changes in the dynamics of arm behavior, for example, 

through the introduction of a curl field [7]. In future 

experiments, we are planning a range of dynamic scenarios, 

including those involving the grasping and placement of 

heavy objects. 
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Figure 2: Hit rate (top), X position (middle) and Y position (bottom) 

generated by the online, adaptive hybrid BMI prior to and after corruption 

of the torque decoder. Corruption of the torque decoder (vertical dashed 

line, t = 0) rendered that monkey unable to use the BMI.  Performance was 

rapidly restored when the adaptive algorithm was enabled (vertical dashed 

line, t ~ 17s). Similar trends were observed in each of the 3 experiments. 

 
Figure 3: (Left) Time resolved BMI performance prior to decoder 

adaptation (Pre, blue) during decoder adaptation (Learning, gray) and 

following decoder adaptation (Post, red). Dashed vertical lines indicate the 

start and end of decoder adaptation (Learning On and Learning Off, 

respectively). (Right) Average BMI performance prior to decoder 

adaptation, during early and late learning and following adaptation. Error 

bars denote ± 1SE about the mean performance. * and ** indicated 

significant differences at the alpha = 0.1 and 0.05 levels, respectively. 
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