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Abstract— Burst suppression is an electroencephalogram
(EEG) marker of profound brain inactivation and unconscious-
ness and consists of bursts of electrical activity alternating with
periods of isoelectricity called suppression. Burst suppression
is the EEG pattern targeted in medical coma, a drug-induced
brain state used to help recovery after brain injuries and to
treat epilepsy that is refractory to conventional drug therapies.
The state of coma is maintained manually by administering
an intravenous infusion of an anesthetic, such as propofol, to
target a pattern of burst suppression on the EEG. The coma
often needs to be maintained for several hours or days, and
hence an automated system would offer significant benefit for
tight control. Here we present a brain-machine interface (BMI)
for automatic control of burst suppression in medical coma
that selects the real-time drug infusion rate based on EEG
observations and can precisely control the burst suppression
level in real time in rodents. We quantify the burst suppression
level using the burst suppression probability (BSP), the brain’s
instantaneous probability of being in the suppressed state, and
represent the effect of the anesthetic propofol on the BSP
using a two-dimensional linear compartment model that we
fit in experiments. We compute the BSP in real time from the
EEG segmented into a binary time-series by deriving a two-
dimensional state-space algorithm. We then derive a stochastic
controller using both a linear-quadratic-regulator strategy and
a model predictive control strategy. The BMI can promptly
change the level of burst suppression without overshoot or
undershoot and maintains precise control of time-varying target
levels of burst suppression in individual rodents in real time.

I. INTRODUCTION

Medical coma is a drug-induced state of profound brain
inactivation and unconsciousness that is used to help recov-
ery after traumatic and hypoxic brain injuries and to treat
epilepsy that is refractory to conventional drug therapies.
In medical coma, the electroencephalogram (EEG) pattern,
termed burst suppression, consists of bursts of electrical
activity alternating with periods of suppression. The state
of coma is achieved by the intensive care unit (ICU) staff
manually adjusting the drug infusion rate to achieve a desired
level of burst suppression on the EEG. Since the state of
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coma for such treatments is often required for days, it is
usually infeasible for the ICU staff to continuously monitor
the EEG and adjust the drug infusion rate to achieve tight
control. Hence developing an automated brain to pump
interface system or a brain-machine interface (BMI) that
continuously monitors the brain’s EEG activity in real time,
calculates the burst suppression level based on the EEG,
and determines the appropriate real-time rate of the infusion
pump to target a desired level would offer significant benefit.

BMI systems for control of anesthesia are often referred
to as closed loop anesthesia delivery (CLAD) systems. There
has been considerable work and success in the last 60 years
on developing these systems for control of sedation and
general anesthesia [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [8], [20],
[21], [22], [23], [24], [25]. For the management of medical
coma, however, no CLAD system has been developed to date.
To develop a framework for testing new anesthetics, Vijn
and Sneyd [26] implemented a CLAD system for non-model
based control of burst suppression in a rat model. Cotten and
colleagues [27] tested new etomidate-derived anesthetics in a
rat model using that framework. Both these studies controlled
a constant level of burst suppression rather than time-varying
levels as needed in medical coma, and reported only average
control results over animals rather than results for individual
animals.

Here we develop a BMI for control of time-varying
target burst suppression trajectories in individual rodents.
We demonstrate that the BMI can accurately achieve and
maintain multiple target levels in a single session, can enable
prompt transitions of burst suppression level between the
target levels while avoiding overshoot or undershoot, and
can explicitly impose various constraints over the infusion
rates and vital states. Our BMI uses the burst suppression
probability (BSP) [28], the brain’s instantaneous probability
of being in the suppressed state, as the control signal and
represents the effect of the anesthetic on BSP using a
linear two-dimensional compartment model that we fit in
experiments prior to BMI control. We build the BMI using
a stochastic optimal control framework that we have also
developed for the design of motor BMIs [29], [30], [31],
[32], [33]. We derive a two-dimensional recursive Bayesian
estimator of the BSP from the EEG segmented into a binary
time-series. We then derive controllers using both a linear-
quadratic-regulator strategy and a model predictive control
strategy that use the BSP estimate as feedback to adjust the
drug infusion rate and achieve a target BSP level.
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II. METHODS

Our goal is to design a BMI that can maintain the burst
suppression level at any desired target level and that can
reliably change the burst suppression level in response to a
change in the target level. We first present the problem for-
mulation and then derive the BMI estimator and controllers.

A. Problem Formulation

We define BSP as our measure of the burst suppression
level by identifying the EEG activity in small time intervals
as a burst or a suppression event after filtering and thresh-
olding it (Figure 1a). We define BSP, denoted by pt, as the
brain’s instantaneous probability of being in the suppressed
state at an interval and use a hyperbolic transform to relate it
to a measure of the brain’s anesthetic concentration, denoted
by xe(t) . This transform maps the drug concentration to a
BSP value between 0 and 1 as

pt =
1− exp(−xe(t))
1 + exp(−xe(t))

. (1)

The BMI aims to control the BSP or equivalently the brain’s
anesthetic concentration using the EEG as input (Figure
1a). To develop the BMI, we build a two-dimensional state
model for the dynamics of the anesthetic concentration in
response to propofol infusion. For this state model, we adapt
a simple two-compartment linear pharmacokinetic model
whose compartments are the central plasma compartment and
the brain or effect-site compartment. Hence our state is two-
dimensional and is denoted by xt = [xc(t), xe(t)]

′, where as
before, xe(t) is the brain’s anesthetic concentration and xc(t)
is the central plasma concentration. Denoting the anesthetic
infusion rate by ut, the state model is given by

xt+1 = Axt + But (2)

with

A =

[
1−∆(kce + kc0) ∆kec

∆kce 1−∆kec

]
B =

[
∆
0

]
.

Here ∆ is the discretization time step, and kce, kec, and
kc0 are parameters of the two-compartment model (Figure
1b). We parameterize and estimate this model from the EEG
response to boluses of propofol administered in a preliminary
experiment prior to initiating real-time control. We do this
by first estimating the BSP from the EEG using a one-
dimensional version of our estimator derived in Section II-
B and then using the method of nonlinear least-squares to
minimize the sum-squared-error between the model predicted
BSP and the estimated BSP.

B. Estimator Design

We derive a recursive Bayesian estimator for the brain
concentration state (or equivalently for the BSP) based on
the EEG observations. Since the anesthetic concentration
states are positive, we estimate their logarithm zt = log(xt).
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Fig. 1. The BMI system. (a) The BMI records the EEG, estimates the
effect-site concentration, and uses this estimate as feedback to control the
infusion rate. Right panel shows a sample burst suppression EEG signal
(top), the absolute value of the low-pass filtered EEG signal in black and
the threshold used to detect the suppression events in red (middle), and
the corresponding binary time-series with black indicating the suppression
and white indicating the burst events (bottom). (b) The two-compartmental
model used by the BMI to characterize the effect of propofol on the EEG.

The goal of the estimator is to find the minimum mean-
square error (MMSE) state estimate at each time. The
MMSE state estimate is given by the mean of the posterior
density, p(zt|N1:t), where Nt denotes the number of observed
suppression events in the tth interval of length ∆, assuming
at most N possible suppression events in this interval.

A recursive Bayesian estimator consists of a prior model
on the concentration states and an observation model relating
the EEG signal to these states. We construct the prior model
on zt based on the two compartment model in (2) with
additive Gaussian noise wt of covariance W

zt+1 = log(A exp(zt) + But) + wt = f(zt) + wt (3)

where exp(zt) denotes component-wise exponentiation of
the elements in zt. The observation in the estimator is the
binary time-series of the burst suppression events obtained
by thresholding the EEG (Figure 1a). To construct the ob-
servation model, we assume that the number of suppression
events Nt in a given time interval of length ∆, which can at
most exhibit N suppression events, is binomially distributed
with burst suppression probability pt.

Both the prior state model and the binomial observation
model above are non-linear functions of the state zt. We
thus use two approximations at each time step to derive
the estimator recursions – a linear approximation to the
prior model at that step and a Gaussian approximation to
the posterior model. Using these two approximations, the
Bayes’ rule, and the Chapman-Kolmogorov equation, we
derive the recursions of the estimator. We omit the derivation
of the estimator for compactness. The derived estimator
recursions consist of a prediction step and an update step.
Denoting the MMSE estimate or equivalently the posterior
mean E(zt|N1:t) by zt|t and its covariance matrix by Wt|t,
and the mean of the one step prediction density p(zt|N1:t−1)
by zt|t−1 and its covariance matrix by Wt|t−1, the estimator
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recursions are given by

zt|t−1 = f(zt−1|t−1) (4)

Wt|t−1 = ÃWt−1|t−1Ã
′ + W (5)

as the prediction step and

zt|t = zt|t−1 + Wt|t

[
0

ct
pt(1−pt)

(Nt −Npt)

]
zt|t−1

(6)

W−1
t|t = W−1

t|t−1 +

[
0 0
0 γt

]
zt|t−1

(7)

as the update step. The notation [·]a indicates the evaluation
of the inside expression at value a, Ã = [∂f∂z ]zt−1|t−1

and

ct =
xe(t) exp(xe(t))

1 + exp(xe(t))
(1− pt) (8)

γt =
Nc2t

pt(1− pt)
−Nt −Npt
pt(1− pt)

[
∂2pt
∂z2e (t)

− 1− 2pt
pt(1− pt)

c2t

]
(9)

∂2pt
∂z2e (t)

= ct [1 + xe(t)− (1− pt)xe(t) exp(xe(t))] . (10)

C. Controller Design

The controller uses the estimated brain anesthetic concen-
tration as feedback to determine the drug infusion rate in
real time. We derive the controller using an optimal feedback
control framework. Once a target BSP level, or equivalently
a target brain concentration level is specified, the goal of the
controller is to take the brain concentration state close to this
target value using as little drug as possible, while satisfying
any required constraints on the control variables. We quantify
this goal as a quadratic cost function for the controller as

J =
∑
t

(xe(t)− x∗)2 + wru
2
t (11)

where x∗ = log ((1 + p∗)/(1− p∗)) is the non-zero effect-
site concentration for the desired non-zero target BSP level
p∗ (see (1)), and wr is a positive quantity chosen depending
on the desired system response. The controller then selects, at
each time, the infusion rate ut that minimizes this cost func-
tion. Using the standard linear-quadratic-regulator (LQR)
solution and by transforming the origin of the state-space
to x∗ [34], we find a closed-form linear-quadratic-regulation
control strategy. Omitting the details for compactness, we
find the solution as ut = −L(xt − x∗) + u∗ where x∗ =
[kec

kce
x∗, x∗]′, u∗ = kc0kec

kce
x∗, and L is the steady-state LQR

feedback matrix given by the well-known solution to the
discrete form of the famous algebraic Riccati equation [34].1

The value of xt at each time step is provided by the estimator.
We impose any infusion rate constraints by bounding this
unconstrained optimized rate.

We also implement a model predictive controller (MPC)
[35] that explicitly enforces the drug infusion rate constraints,
such as positivity, by solving a constrained optimization

1The steady-state solution in our problem exists since we can show using
the experimental fits that the state model, [A,B], is controllable.
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Fig. 2. Real-time BMI control of burst suppression in individual rats in
two experiments. In each subfigure, the top panel shows the closed-loop
controlled BSP trace in black and the desired time-varying target level in
green, and the bottom panel shows the corresponding drug infusion rate
administered by the BMI.

problem at each time step to minimize the cost function. The
bounded LQR and MPC strategies perform similarly in our
experiments since we do not require any constraints on the
state variables. However, our estimator combined with the
implemented MPC can solve problems in which constraints
are required on the state variables as well as the drug infusion
rates, and can extend our paradigm to the joint control of the
anesthetic state and other vital states such as blood pressure
using joint administration of multiple drugs.

III. RESULTS

We implemented our BMI in real-time rat experiments.
Surface EEG recordings were collected using intra-cranial
electrodes at 4 stereotactic coordinates relative to lambda.
The EEG signal was low-pass filtered (below 5Hz) and
thresholded to convert it into a binary time-series (Figure
1a). This binary EEG signal was then used as input to the
BMI that controlled a Physio 22 syringe pump (Harvard
Apparatus, Holliston, MA) to deliver propofol using a 24-
gauge IV catheter placed in a lateral tail vein. At the
start of each experiment, multiple boluses of propofol were
administered to the rat and the resulting BSP signals were
used for offline fitting of the two-compartment model (see
Methods). The real-time BMI experiments followed this sys-
tem identification. The aim in the real-time BMI experiments
was to acquire, maintain, and transition between at least three
target BSP levels (low, medium, high) in randomized order.

To characterize the performance of the BMI at steady state,
we compute the error between the target BSP at each time,
p∗(t), and the controlled BSP, pt|t, i.e., et = p∗(t) − pt|t.
We then calculate two standard metrics of performance [36],
the median prediction error (MDPE) given by MDPE =
median(et/p

∗(t))×100 and the median absolute performance
error (MDAPE) given by MDAPE = median(|et|/p∗(t)) ×
100. The MDPE is a measure of bias at steady state and the
MDAPE is a measure of normalized error.

In each animal and experimental session, the BMI success-
fully and promptly transitioned between levels and accurately
maintained the BSP at a desired target level. The results
for two experimental sessions in two rats are shown in
Figure 2. The BMI was especially successful in increasing
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or decreasing the level of BSP promptly and reliably, while
avoiding overshoot or undershoot. At steady-state, the BMI
could accurately maintain a desired BSP level in these
experiments (Figure 2) with a median performance error,
MDPE, of 3.57% and a percent bias, MDAPE, of −0.13% .

IV. CONCLUSIONS

We investigated the feasibility of automatic control of
medical coma by developing a BMI to control burst sup-
pression in a rodent model. Our BMI reliably and ac-
curately controlled burst suppression in individual rodents
across dynamic time-varying target trajectories. Our results
demonstrate that automatic control of medical coma is highly
feasible using a BMI.
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