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Abstract—Pattern classification has been used for design of 

neural-machine interface (NMI) that identifies user intent. Our 

previous NMI based on electromyographic (EMG) signals and 

intrinsic mechanical feedback has shown great promise for 

neural control of artificial legs. In order to make this NMI 

practical, however, it is desired that classification algorithms 

can adapt to EMG pattern variations over time, caused by 

various physical and physiological changes. This study aimed to 

develop an adaptive pattern recognition framework in the NMI 

to improve the robustness of NMI performance over time. Two 

adaptive algorithms, i.e. entropy-based adaptation and 

Learning From Testing Data (LIFT) adaptation, were presented 

and compared to the NMI with non-adaptive classifiers. 

Support vector machine (SVM) was selected as the basic 

classifier. Gradual change of EMG signals was simulated over 

time on EMG data collected from four transfemoral (TF) 

amputees. The preliminary results showed that the NMI with 

adaptive classifiers produced more consistent performance over 

time than the classifier without adaptation. The results of this 

preliminary study indicate the potential of using adaptive 

classifiers to improve the NMI reliability for neural control of 

powered prosthetic legs. 

I. INTRODUCTION 

Lower limb amputation is one of the major causes of 

disability [1]. In order to restore mobility and stability of lower 

limb amputees, it is desired to develop bionic prosthetic legs 

that provide (1) active power around the prosthetic joints and 

(2) coordinate with user intent. Recent efforts in developing of 

powered artificial knee or ankle have enabled lower limb 

amputees to climb stairs, rising from chairs, and even running, 

which are difficult, if not impossible, when amputees use 

passive devices [2-4]. 

However, none of current lower limb prostheses is 

neurally controlled. The users must “tell” the prostheses their 

intent for task transition using manual approaches, which is 

limited in function and cumbersome-to-use. 

Electromyographic (EMG) signals are commonly used neural 

control source for artificial limbs [5-7]. Several recent studies 

have reported neural-machine interface (NMI) based on EMG 

signals for artificial legs; these NMIs were designed to 

identify either the intended joint motion [8-9] or task modes [2, 

10]. Specifically, our group developed a NMI for identifying 

the user’s performing task mode using a phase-dependent 
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pattern classification strategy [10] and 

neuromuscular-mechanical fusion [11].  When the support 

vector machine (SVM)-based classifiers were applied to EMG 

recorded from the residual muscles of leg amputees and 

mechanical feedback measured from the prostheses, over 95% 

accuracy has been achieved to classify 6 tested locomotion 

modes [11]. 

Although the reported NMIs based on EMG signals have 

shown a great potential for artificial legs [10-11], the 

robustness of these NMIs over time has rarely been evaluated. 

One of the challenges in design of NMI based on EMG 

recordings is the gradual variation of EMGs over time, caused 

by physical (e.g. electrode shift and impedance change) and 

physiological changes (e.g. human adaption and muscle 

fatigue). For instance, the electrode location shifts may cause 

magnitude change in EMG [12-13]; muscle fatigue leads to 

EMG medium frequency and magnitude drift [14-15]. The 

gradual changes of EMG influence the NMI robustness for its 

application for robust prosthetic leg control. Usually, the 

pattern classification task is composed of two steps: training 

and testing. The goal of training is to collect the calibration 

data to build the parameters in classifier. The limited number 

of calibration data for training cannot accommodate to the 

EMG pattern variations during long-period testing. Therefore, 

a specific classification strategy that adapts to the changes of 

EMG signals as time progresses, is demanded. Several 

adaptive EMG pattern recognition algorithms have been 

reported for control of upper limb prosthesis [16-17]. For 

example, Sensinger et al. [17] compared four supervised and 

three unsupervised adaptation paradigms on EMG pattern 

recognition and concluded that monitoring the entropy value 

of classification decision can assist classifier adaptation to 

EMG variation and improve NMI robustness. However, there 

has been no report on design of adaptive NMI based on EMG 

signals for powered prosthetic leg control. 

In this preliminary study, we investigated two adaptive 

pattern recognition algorithms in dealing with gradual EMG 

magnitude change in neuromuscular-mechanical fusion-based 

NMI designed for artificial legs. Gradual magnitude changes 

of EMG signals were simulated over time on data collected 

from four transfemoral (TF) amputees. Comparative study 

was conducted on the two adaptive NMIs and the NMI 

without using adaptive strategy. The results of this study may 

lead to a new design of NMI that is reliable and practical for 

neural control for artificial legs. 
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II. METHODOLOGY 

A. Data Collection and Experiments  

Four subjects with unilateral TF amputations (TF01-TF04) 
were recruited with IRB approval. Signed consent forms were 
obtained from subjects. All the TF subjects participated in the 
experiments wearing the hydraulic passive prosthetic legs.  

For all the TF subjects, the EMG signals from their 
residual limb muscles were collected by seven bipolar EMG 
electrodes embedded in a gel liner. The targeted muscles 
included sartorius (SAR), rectus femoris (RF), vastus lateralis 
(VL), vastus medialis (VM), biceps femoris long head (BFL), 
semitendinosus (SEM) and biceps femoris short head (BFS). 
The locations of electrodes were approximately confirmed by 
EMG recordings when subjects were attempting hip motions 
and knee extension/flexion. The ground electrode was 
positioned on the anterior iliac spine. A 16-channel EMG 
system (Motion Lab System, Boston Rouge, LA) was used to 
record EMG signals. The collected EMG signals were filtered 
by the recording system between 20 and 420 Hz with a 
band-pass gain 1000. Mechanical signals were measured by a 
six-degree-of-freedom (DOF) load cell (Bertec Corporation, 
Columbus, OH) mounted on the prosthetic pylon. Both EMG 
and load cell measurements were sampled as 1000 Hz and 
synchronized as well.  

Five locomotion modes and eight mode transitions were 
investigated. The locomotion modes were level-ground 
walking (W), stair ascent (SA), stair descent (SD), ramp 
ascent (RA) and ramp descent (RD). The mode transitions 
included W→SA, W→SD, W→RA, W→RD, SA→W, 
SD→W, RA→W and RD→W. The experiment consisted of 
two parts: training and testing. The calibration data used to 
build the classifier were collected during training. In the 
testing part, subjects began with level-ground walking, 
ascended the stair/ramp, turned 180 degrees, and walked back 
to the initial position for one testing trial. Ten testing trials 
were conducted for each subject and rest periods were allowed 
during the experiments.  

B. Feature Extraction and Pattern Recognition  

Based on neuromuscular-mechanical fusion strategy 
reported in our previous study [10], the EMG and mechanical 
signals were segmented into sliding window 160 ms in length 
and overlapped at 20 ms intervals. Four commonly-used 
time-domain features (i.e., mean absolute value, waveform 
length, number of zero-crossing, and number of slope sign 
changes) were extracted from each EMG channel [5]. For the 
mechanical loads, the maximum, minimum and mean values 
were selected as the features. Then the fused feature vectors 
were sent into a phase-dependent classifier associated with 
each gait phase to identify the locomotion mode.  In this study, 
a multiclass SVM [18] with “one-against-all” structure and 
radial basis function kernel function was used as the basic 
classifier.  

C. Adaptive Classification Algorithms 

      In this study, two adaptive algorithms: entropy-based 

algorithm [17] and Learning From Testing Data (LIFT) [19] 

algorithm are introduced in the following part.  

 Entropy-based Adaptation 

      Entropy [17], which is a measurement of confidence for 

classification decisions, can be defined as 

                            ( )   ∑   ( )   (  ( ))
 
                      (1) 

where,   ( ) is the probability of the nth decision belongs to 

class k and K (K=5) is the total number of considered classes. 

A low-entropy decision is highly confident and mostly like a 

correct classification; a decision with high entropy value 

means low confidence. The entropy-based adaptive algorithm 

monitors the entropy of each classification decision and 

chooses testing data with low-entropy decisions to enlarge the 

training data. In this study, the data collected in the initial 

training session were first used as the training dataset to build 

the classifier. Then the classifier was used to test the data 

collected during the first testing trial. The data associated 

with the decisions of low entropy value were then added into 

the training dataset as the augmented data to re-train the 

classifier. After that, the updated classifier was applied to test 

the data collected from the second testing trial. This 

procedure was repeated until all of the testing trials were 

tested. To ensure the high classification accuracy, a threshold 

was defined and optimized to find the sufficiently low 

entropy value. Details on defining the threshold was 

described in Section II E. 

 Learning From Testing data (LIFT) Adaptation  

     The basic concept of LIFT [19] is to recover the labels of 

the testing data using several binary classifiers, and enlarge 

the training data adaptively by the recovered data. The 

procedure of this algorithm is summarized as follows. 

Initialization of Three Datasets 

      (1) Training dataset                      , where 

   is a feature vector,                is the label of   ;      

is the total number of training data samples. The initial data 

samples in     were collected in the training procedure. 

      (2) Available testing trials     
(        )         

        
. Wherein, T is the number of testing trials (T=10); 

    
 is the total number of data samples in one testing trial. 

      (3) Recovered testing dataset     that is empty before 

testing, i.e.      . 

Classifier Testing and Adaptation Procedure 

       (1) Set    , i.e. the first testing trial in the experiment.  

       (2) Train and test a multiclass classifier: Use     to train 

a five class classifier      . Apply the testing dataset     
 to 

      and return the predicted labels    for testing data   . 

       (3) Formulate binary training datasets: For each class 

  (       ) : Partition     into    
 

 and  ̅  
 

, where 

   
 

                             and  ̅  
 

 
                           . Then label all the data 

samples in    
 

 as class 1 and all samples in  ̅  
 

 as class 2 to 

form a binary classification training dataset, i.e.  ̂  
 

 
                            . Therefore, there were 

totally five binary training datasets  ̂  
 

(       ). 

      (4) Build binary classifiers, i.e.     
(g=1,…or 5, and is 

also defined as the label of the binary classifiers) based on 

binary training datasets  ̂  
 

(       ). 

       (5) Apply the testing dataset     
 to five binary 

classifiers     
(       ) and return the predicted labels 
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 ̂    (i.e. the label of p
th 

 sample from the g
th

 binary classifier). 

The binary label  ̂    can be 1 or 2. 

       (6) Select recovery testing data: If a testing sample results 

in only one label out of five binary decisions as class 1, this 

testing sample was selected and added into the recovery 

testing data set    . The label of this sample was the label of 

the corresponding classifier, i.e. g in     
. 

       (7) Update the training data set     by including the new 

recovery testing dataset    . 

       (8) Set       and       . 

       (9) Repeating (2)-(8) until finishing testing     
. 

D. The Simulation of EMG Variations 

     In this study, EMG signal variations were simulated to 

investigate the NMI performance with and without adaptation. 

Although there were many causes of EMG variation [20], the 

EMG signals change due to electrode location shifts was 

simulated here because it has been observed and reported in 

upper limb myoelectric control [12]. The position shifts of 

electrodes could be simulated as EMG signal magnitude 

changes [20] 

                                      ( )  (   )   ( )                              (2) 

where,   ( ) is the raw signal of the i
th

 channel, ‘ ’ means the 

increase of signal magnitude, ‘ ’ means the decrease of 

signal magnitude and   is the percentage of magnitude 

variation. An example of an EMG signal with magnitude 

variations is shown in Fig.1. Among all the EMG channels in 

the last five testing trials, b (b<=7) channels were randomly 

selected as candidate channels. For each candidate channel, 

the percentage of magnitude variations was also randomly 

simulated within three ranges: -10%~10%, -20%~20% and 

-30%~30%. For each range, the disturbance was simulated 

five times. 

E. Parameter Selection and Evaluation 

     For the entropy-based adaptation, the entropy threshold 

should be determined before testing. The experimental data 

from TF04 was used to optimize this threshold. The values 

from 0.01 to 1.60 with an interval 0.04 were scanned and 

optimized to maximize the classification accuracy defined as 

equation (3). 

     Data collected from TF01-03 were used to quantify the 

performance of NMI with and without adaptive classifiers. 

The NMI performance was quantified separately for static 

states and transition periods [11]. Static states were defined as 

states when subjects continued performing one task. The 

transitional period was the period when subjects changed 

modem which included a full stride cycle and two stance 

phases of the prosthetic leg. For the static states, the overall 

classification accuracy was defined as 

   
                                                      

                                    
      (3). 

For transitions, the number of missed transitions was 

computed [11]. A missed transition was identified if no 

correct or stable task transition was recognized within the 

transitional period. A stable task transition was a correct 

transition decision recognized for at least 18 decisions. 

III. RESULTS 

      For the NMI performance in static states, the overall 

classification accuracies over time (testing trials) for TF01 

derived from non-adaptive and two adaptive classifiers are 

shown in Fig.2.  In Fig. 2 (a)-(c), the range of simulated 

magnitude variations are -10%~10%, -20%~20% and 

-30%~30%, respectively. When the variation range was small, 

both adaptive classifiers could maintain the performance, but 

the classification accuracy for the NMI without adaptation 

dropped over time. When the disturbance level was large, the 

classification accuracy decreased after the EMG variation 

was introduced for all three algorithms. However, the two 

adaptive algorithms could achieve higher accuracy 

 
Fig. 1. An example of EMG signals with magnitude variations. 

 
Fig. 2. Example of overall classification accuracy over time of  TF01 for 
different magnitude variation ranges (a:±10%,b:±20%,c:±30%). 

Entropy-based adaptive (dashed lines) and LIFT adaptive (dotted lines) 

classifiers have better accuracies than non-adaptive classifier (solid lines) 
especially after the simulated variations are introduced from the sixth 

testing trial. 
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(6.5%~12%) than non-adaptive one. Furthermore, the 

average classification accuracies computed by non-adaptive 

and adaptive classifiers across the last three trials are 

represented in Fig. 3. Both adaptive algorithms can increase 

the classification accuracies significantly (One-way ANOVA, 

p<0.05). As for the performance in transitional period, both 

of the tested adaptive algorithms can reduce the number of 

missed transitions as compared to the non-adaptive classifier 

(Table I).  

IV. DISCUSSIONS AND CONCLUSIONS 

This study presented two adaptive pattern recognition 
algorithms for NMI based on neuromuscular-mechanical 
fusion designed for artificial legs. Gradual magnitude 
variations of EMG signals were simulated in data collected 
from TF amputees. The simulated magnitude disturbances on 
EMG signals would significantly influence the performance of 
NMI without adaptation. Both adaptive classification 
algorithms can cope with variations of EMG signals. When 
simulated magnitude variations were small, the NMI with 
adaptive classifiers could maintain its accuracy over time. 
When variations were large, the accuracy of adaptive 
classifiers would drop over time, but not as much as 
non-adaptive classifier. These results indicated that adaptive 
classifiers could improve the robustness of NMI against 
gradual EMG signal variations caused by physical reasons. 

This study is preliminary. First, only simulated variations 
on EMG signals were considered in this study. Further study 
should take into account EMG disturbances happened in real 
experiments. Moreover, this study only considered the data 
collected from the subjects on passive prosthesis. Experiments 
should be conducted on powered devices to test the adaptive 
classifiers. Finally, the data in every testing trial were 
balanced for each class in this study, because the experiment 
was conducted in designed laboratory environment. 
Imbalanced data between classes should be tested by adaptive 
classifiers in future study. 
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Fig. 3. The average classification accuracies (%) of the last three testing 

trials across TF01-TF03 for different magnitude variation ranges. The 
performances of non-adaptive (white bars), entropy-based adaptive 

(black bars) and LIFT adaptive (gray bars) classifiers are demonstrated. * 

means a statistically significant difference (one-way ANOVA, p<0.05). 

TABLE I 

THE NUMBER OF MISSED TRANSITIONS AMONG ALL SUBJECTS 

No. of Missed 
Transitions 

MVR: 
-10%~10% 

MVR: 
-20%~20% 

MVR: 
-30%~30% 

No Adaptation 5 23 42 

Entropy-based 

Adaptation 

1 4 10 

LIFT Adaptation 1 3 10 

Note: The total number of investigated task transitions is 1200. MVR 

denotes magnitude variation range.  
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