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Abstract— Spinal cord injuries (SCI) can cause the loss of 
communication and control of the extremities. The long-term 
effects of disconnecting the brain from the body can cause 
plastic reorganization of the motor system that worsens the 
impairment. New research in coupling standard rehabilitation 
with developments in Brain-Computer Interfaces (BCI) could 
engage the user’s brain more actively and lead to better 
performance gains over time. BCI enabled rehabilitation offers 
the unique ability to rehabilitate the motor system as a whole, 
including secondary damage in the motor cortex. BCI based 
rehabilitation is a challenging problem because it leads to both 
neurophysiological and performance dynamics. Contending 
with these changes could be problematic for standard BCIs, 
since they are based on static decoders. To overcome these 
challenges, an adaptive EEG BCI system is developed here to 
facilitate the user throughout rehabilitation. The system is 
based on actor-critic based reinforcement learning (RL) which 
uses both motor and error related potentials (ErrPs) in the 
EEG to respond to the evolving performance of the user. 
Performance of the BCI system is characterized over multiple 
sessions. 

I. INTRODUCTION 

 
Each year, more than 10 people per million will incur a 

spinal cord injury (SCI). Of these injuries, one-third is 
reported to result in tetraplegia [1].  People living with 
tetraplegia rank hand function as the ability they would most 
like to see restored [2]. With decrease use of hand 
movements, plastic reorganization occurs in the brain 
worsening the impairment [3]. To alleviate motor disabilities 
caused by spinal cord injury will require rehabilitation that 
restores not only bottom up function (extremities) but also 
top-down control (brain activity) to produce a complete 
therapy for the motor system as a whole.  

One approach to produce a more comprehensive therapy is 
to augment standard rehabilitation with new developments 
from the study of Brain Computer Interfaces (BCI). BCI’s 
record brain activity and translate it into actions in the 
physical world [4]. BCI's do this by decoding 
electroencephalography (EEG) data with a computer system 
to determine a user's intent. By engaging the user’s brain to 
actively control extremities during rehabilitation, BCI’s 
combined with rehabilitation could offer the unique ability 
to rehabilitate the motor system as a whole, including 
secondary damage in the motor cortex [5].  
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Rehabilitation of the motor cortex will likely lead to 
relatively dramatic and rapid changes in user’s motor 
potentials.  These changes could be problematic for the BCI, 
since motor potentials are the primary inputs being decoded. 
To decode the changing motor potentials will require an 
adaptive BCI, one that facilitates user performance 
throughout rehabilitation. Traditional BCI's use a static 
decoding algorithm to map the user's brain activity to 
intended actions. Changes to the decoding algorithm 
typically require the user to participate in a recording session 
to retrain the BCI however this is undesirable during 
rehabilitation when therapy is constantly being delivered in 
real-time. 

 Recently our lab has developed new reinforcement based 
decoders that could assist with rehabilitation because they 
are adaptive in their design [6]. With an actor-critic based 
reinforcement learning (RL) BCI, the BCI continuously 
adapts to the user.  When the BCI successfully decodes the 
user’s brain activity, that mapping of brain activity is 
reinforced. Similarly, when the BCI is unsuccessful in 
decoding the user’s brain activity, that mapping of brain 
activity is adapted. 

  In this paper, a new EEG BCI system using reinforcement 
learning is developed as an experimental test bed for 
augmenting rehabilitation with a BCI. The reinforcement 
learning architecture behind the adaptive BCI is presented. 
This adaptive BCI is used to collect sample data trials from a 
user. These sample trials are then used to run a simulation of 
the adaptive BCI over an extended period of time. The 
results of this simulation are then analyzed in the context of 
augmenting rehabilitation. 

 

II. METHODOLOGY 

 

A. Experimental Task 

Since upper extremity function is a top priority for people 
living with SCI, testing here focused on the ability to control 
hand grasp. During the experimental task used for initial 
benchmarking the preliminary system, the user, one healthy, 
adult, male with no prior BCI experience, watches a display 
that shows cues to open or close their hand. This display also 
provides feedback updated after each cue on whether the 
BCI’s decoding was correct using a bar plot to indicate the 
BCI’s decoding of the user’s brain activity, Fig. 1. The 
number of ‘+'s and ‘-'s on the screen show the unthresholded 
output of the motor potentials classifier. 
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The experiment consisted of four sessions of 120 trials 
with a 5-minute break between each session. During the first 
session, a predetermined sequence of cues for “open” and 
“close” and feedback of “correct” and “wrong” were 
presented.  The user received predetermined feedback of  
“wrong” 50% of the time to evoke error related potentials 
(ErrP) in the user’s EEG [7].  

 

Figure 1. For each trial during the experimental task, the display showed a 
fixation cross for 1s, followed by a cue for “open” or “close” for 1s, and 
then feedback of “correct” or “wrong” for 1s. In addition to the explicit 
feedback of “correct” or “wrong”, a bar plot was presented that show the 
unthresholded output of the motor potentials decoder. 

 During the next three sessions, the display produced the 
decoding of the users modulated motor potentials. Cues of 
“open” and “close” were presented in a predetermined 
sequence. And, feedback was displayed, based on the BCI’s 
classification of the user’s motor potentials. 

B. Actor Critic RL 

When the user controlled the display, the input to the BCI 
was the user’s motor EEG and the output was two possible 
actions, “open” or “close”, Fig. 2. The BCI was updated 
using an actor-critic RL algorithm [8]. The actor-critic RL 
algorithm tries to optimize the functional mapping of the 
user’s brain activity to the possible actions. The actor-critic 
RL method is a semi-supervised machine learning method in 
which the actor learns from the critic’s feedback [8]. 

 

Figure 2. Actor-critic reinforcement learning brain-computer interface 
architecture. The actor decodes motor potentials and outputs an action 
shown on the display. The critic detects ErrP and provides feedback to 
actor. The actor uses feedback from the critic to adapt to the user. 

Both the actor and critic are 3-layer fully connected 
feedforward neural networks. The hidden and output nodes 
of the neural networks perform a weighted sum on their 
inputs. The weighted sum at each node is passed through a 
hyperbolic tangent function with an output in the range of -1 
to 1. The weights between the actor’s nodes are initialized 
randomly and then updated after each trial based on 
feedback. The critic provides the feedback by decoding the 
user’s EEG to determine if they generated an ErrP. If an 
ErrP is detected feedback of -1 is provided to the network 
for adaptation. If not, a feedback value of 1 is used.  

The actor’s weights update can be expressed as: 

       (  (     ))   (   ) (  (       )) 

Here wij is the weight connecting nodes i and j,  is the 
learning rate, pj is a sign function of output xj (positive 
values become +1 and negative values become -1) and f is 
feedback from the critic. The weight update equation is 
based on Hebbian style learning [9, 10]. Improved 
classification performance by the actor in early trials was 
achieved by real time 'epoching' of the data [10]. After each 
trial, the actor was trained on the current trial and all 
previous trials. 

C. Data Acquisition 

Neural signals were recorded with a 10-channel Advanced 
Brain Monitoring (ABM, Carlsbad) wireless EEG system 
(sample rate 256Hz, 16 bits of resolution) with electrodes in 
a 10-20 system arrangement. Motor potentials related to the 
intent to open or close the right hand were collected from the 
C3 electrode, 1-50Hz. In addition to motor potentials, error-
potentials (ErrP) were collected from the Cz electrode, 5-
10Hz. EEG corresponding to motor potentials were low pass 
filtered at 60Hz. ErrPs were low pass filtered at 10Hz [11]. 
Power spectral density (PSD) of 1 Hz resolution was then 
computed on the 1s of filtered EEG data after cues were 
displayed for motor potentials and the 1s of filtered EEG 
data after feedback was given for ErrPs.  The PSD was 
normalized for each 1 Hz bin by subtracting the mean of all 
trials and dividing by the standard deviation of all trials. 

EEG is commonly contaminated by artifacts originating 
from ocular muscle motion, which has a high amplitude 
relative to EEG signals.  Ocular artifact such as eye blinks or 
saccadic motion are relatively simple to identify by visual 
examination of the neural signals and are characterized by 
short duration high amplitude wave most present across 
frontal electrodes (such as Fz, F3, & F4).  To remove these 
artifacts from the signal, Independent component analysis 
was applied using the Infomax algorithm present in EEGlab 
[12]. Independent Components due to artifacts from eye 
movement & blinking were identified by their frontal 
distribution in scalp topography, matching of component 
activity in the time domain to eye blink shape, & smoothly 
decreasing activity power spectrum  [13, 14]. The artifactual 
components were then subtracted from the EEG and the 
remaining components were remixed to produce a cleaner 
signal.   
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D. Critic Error Potential Classifier 

 
The error potential classifier, critic, detects ErrPs in the 

user’s EEG to determine if the user thought an error 
occurred. The critic than provides binary feedback, -1 or 1, 
to the actor. The input to the error potential classifier was the 
PSD from 5-10Hz in 1 Hz bins computed on the 1s of 
filtered EEG data after the actor’s output, action, was shown 
on the display. 

The error potential classifier in the critic is a 3-layer 
adaptive neural network with 5 inputs nodes and 5 hidden 
nodes, trained via backpropagation. The 120 trials of the first 
session were randomly assigned to either a training set or 
test set. The training set was used to optimize the weights of 
the critic. The weights produced from the training were 
assessed by passing the test set through the critic and 
computing its classification accuracy.  The critic was trained 
and tested until the generalization increased above a 
threshold [15]. The weights of the critic used in the best 
testing session were then saved and used for all subsequent 
experiments.  

 

III. RESULTS 

 
The performance of the EEG BCI based on reinforcement 
learning is summarized in three parts: 1) critic performance, 
2) overall decoding accuracy over time, and 3) 
characterization of the actor in the early, middle, and late 
trials of the sessions. 

A. Error Potentials Classifier Performance 

 
To test the training paradigm, a 10-fold cross-validation 

was performed. The above training procedure was repeated 
10 times and the average classification accuracy was 
computed, shown in Table 1.   

 

 

 

 

B. Reinforcement Learning BCI Performance 

 
To test the performance of the BCI an offline simulation of 

3500 trials was performed. The simulation provided a 
method to test several factors. A large number of trials could 
be used, which is more realistic for rehabilitation over 
several days. Additional processing and filtering could be 
done on the EEG data, which would require optimization to 
perform in real time. And, a large number of features could 
be used as input to the actor, which would also require 
optimization to perform in real time. 

The simulation was performed by generating a random 

sequence from the 360 recorded trials. The motor potentials 

from the random trial were filtered and features created, 

PSD in 1Hz bins from 1-50Hz. Individual frequencies did 

not show large differences in average power between the 

two classes (open and closed); however the classifier was 

able to learn discernible patterns across the 50 frequencies of 

1-50Hz.  The actor classified the trial based on these 

features. If the actor’s classification was correct for that trial, 

recorded EEG data from a trial that showed feedback of 

correct was presented to the critic. Similarly, if the actor’s 

classification was incorrect for that trial, recorded EEG data 

from a trial that showed feedback of incorrect was presented 

to the critic. The output of the critic was given as feedback 

to the actor, so the actor’s weights could be adapted with 

RL. 
Fig. 3 shows the cumulative classification accuracy, 

number of correct trials divided by the number of trials, of 
the BCI over the course of the simulation. The performance 
of the BCI increased rapidly over the first few hundred trials 
and continued to increase until the end of the 3500 trials 
simulation. After the first 1500 trials, the performance of the 
BCI showed a monotonic increase, indicating the BCI was 
converging on a solution and becoming more stable. To test 
for overfitting the dataset, the same algorithm was run on a 
surrogate dataset (randomized motor potentials); the end 
classification accuracy was 51% . 

 

 

Figure 3. Simulation of a session over 3500 trials, equivalent to a 3 hour 
recording session. The simulation used 50 features, power in 1Hz bins from 
1-50Hz. 

 

 Fig. 4 shows a more detailed view of the performance of 
the BCI during the beginning, middle, and end of the 
simulation. The actor’s performance, the weight values of 
the actor, and the output of the actor are shown. Again, the 
BCI performance can be seen to increase rapidly in the 
beginning of the simulation and become more stable later on 
in the simulation, while still increasing. The weights of the 
actor changed dramatically at the beginning of the 
simulation as the BCI adapts to the user and finds a solution.  
In the middle of the simulation the BCI is still adapting to 
the user, as seen in the changing weight values, but is 
converging on a solution and becoming more stable. At the 
end of the simulation, as the RL algorithm converged on a 
solution to mapping the motor potentials to the actions, the 
weights became stable. The actor’s output showed a 
decrease in errors, red stems, as the simulation progressed. 
The errors were more likely to be single events and not 
clustered together, at the end of the simulation.  

 ErrP No-ErrP 

Classified as ErrP 69% 37% 

Classified as No-ErrP 31% 63% 

Table 1. Classification results of the critic for both trials with an ErrP and 
No-ErrP.  

1565



  

 

Figure 4. Actor performance during simulation of 3500 trials. Columns 
show data from different portions of the simulation: beginning, middle, and 
end. The first row shows the actor’s cumulative classification accuracy. The 
second row shows the actor’s weights adapting. The third row shows the 
actor output, with green stems indicating correct trials and red stems 
indicating incorrect trials. 

 

IV. DISCUSSION 

 
 The simulation showed several results important for 
rehabilitation. The performance of the BCI increased rapidly 
in the first few hundred trials. To maintain the user’s 
engagement, the performance of the BCI has to increase 
above chance quickly, so the user continues to be engaged in 
control of the device. The performance of the BCI also 
showed steady increases in later trials, also important for 
user’s engagement. The mapping of motor potentials to 
actions also became stable in later trials, as seen in the 
weights values plots. This stability means the user will not 
see sudden decreases in performance in later trials unless 
there is a large remapping necessary. 

 In future work, an EEG system with more electrodes will 
be used. The additional electrodes will increase spatial 
resolution within the motor cortex, which could increase the 
motor decoder accuracy and potentially increase the 
recognition of ErrPs. When the BCI is paired with 
rehabilitation (i.e. functional electrical stimulation 
controlling hand grasp), the subject will see actual physical 
movement, which should increase engagement in the task. 
The increased engagement could improve motor potential 
signal strength. We seek to monitor performance over 
several days to collect a large number of trials and test how 
the BCI handles extended breaks between sessions. The 
extended breaks could lead to more dramatic changes in the 
user’s motor potentials; the adaptive BCI used here is well-
suited for this kind of application. 
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