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Abstract— Most neural prostheses feature metallic electrodes
to act as an interface between the device and the physiological
tissue. When charge is injected through these electrodes, po-
tentially harmful reactions may result. Others have developed
finite element models to evaluate the performance of stimulating
electrodes in vivo. Few however, model an electrode-electrolyte
interface, and many do not address electrode corrosion and
safety concerns with respect to irreversible reactions. In this
work, we successfully develop a time domain finite element
model of cochlear implant electrodes that incorporate oxygen
reduction and platinum oxidation reactions. We find that when
electrodes are stimulated with current pulses (0.5 mA, 25 µs),
faradaic reactions may cause an increase in the peripheral
enhancement of the current density.

I. INTRODUCTION

Cochlear implants and other neural prostheses utilize
metallic electrodes as a means of interfacing with excitable
tissues of the body. Most contemporary cochlear implant
arrays feature half-banded or hemicylindrical electrodes on
a silicone carrier. These include the Contour Advance and
CI422 arrays manufactured by Cochlear Ltd. These arrays
are implanted into the inner ear and enable electrical charge
delivery to nerve fibers. Inherent to charge injection with
these electrodes is the occurrence of electrochemical reac-
tions that may be detrimental to the operation of the pros-
thesis. These reactions may cause corrosion of the electrode
surface and produce harmful by-products that facilitate tissue
damage. To date, numerous studies have been conducted to
investigate the damage caused by stimulating electrodes and
develop guidelines to avoid such damage [1]-[3]. Much of
the electrode safety knowledge is based on empirical data
published in such literature.

There has been increasing interest in this area due to the
development of novel neural prostheses requiring smaller
electrodes with more complex geometries. Finite element
models have been used to help predict the performance
of stimulating electrodes in vivo. Most of these aimed to
model the activation of neural tissue, however until recently,
many have not added the effects of the electrode-electrolyte
interface. Of the published cochlear implant models, only
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simplistic representations of the electrochemistry have been
modeled and the actual electrochemical consequences are
neglected to date [4], [5]. These studies attempted to ac-
count for the electrical characteristics imparted by these
electrochemical processes because they may significantly
affect clinical measures such as impedance. Cantrell et al.
incorporated an electrode-electrolyte interface into an elec-
trical model of disc and needle electrodes [6]. Their study
was based purely in the frequency domain and used rather
general parameters to define their faradaic reaction kinetics,
assuming a symmetrical current-overpotential relationship.
Behrend et al. produced a study of edge effects on disc
electrodes in the time-domain, but assumed the electrode-
electrolyte interface was a simple capacitor and hence, mod-
eled the electrode as being ideally polarizable [7].

These past works have examined the effect of the
electrode-electrolyte interface, without explicitly considering
the reactions that provide the applied electrical phenomena.
This study uses finite element methods to analyze two
reactions known to occur on cochlear implant electrodes.
Their distribution and rates on two different sized electrodes
will be discussed. Such an analysis may provide valuable
insight to the future design of intracochlear electrodes.

II. METHODS

A. Geometry Construction

To mimic an intracochlear electrode array, a hemicylin-
drical electrode on cylindrical silicone carrier was modeled
in the finite element package, COMSOL v4.3a (COMSOL,
Burlington, MA). The electrode and carrier were centered
in a larger cylinder that represented the perilymph of the
cochlea. The size of the electrodes was varied by changing
the electrode length, as defined in Fig. 1. The confined space
of the cochlea restricts changes to many other electrode
dimensions. To highlight the sensitivity of the results to the
electrode size, electrodes with lengths of 0.10 mm and 0.30
mm were chosen. A length of 0.30 mm is typical for an
intracochlear electrode. Electrodes will be identified by their
length for the remainder of this paper.

Electrical conductivity (σ ) and relative permittivity (εr)
values used for platinum (σ = 94.35× 105 S/m, εr = 1),
silicone (σ = 10−14 S/m, εr = 4.2) and perilymph (σ = 1.42
S/m, εr = 78) were consistent with those used in the previous
studies [6]. Physiological saline is similar in composition to
the perilymph in the scala tympani, so it was assumed that
the electrical properties of both fluids are also similar.
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Fig. 1. Electrode domain showing definition of geometrical parameters.

B. Boundary Conditions

All domains in the electric models were solved for electric
potential (V) using the electric currents module in COMSOL.
To simulate the electrical conditions of an implanted cochlea,
the ends of the electrolyte cylinder were grounded (V = 0).
A current terminal is located at the inner surface of the stim-
ulating electrode, to maintain a constant stimulation current
of ±0.5 mA. Positive and negative terminal current values
enabled separate cathodic and anodic models, respectively.
Neumann boundary conditions (n ·J = 0) are assumed for
all external surfaces of the electrolyte and the boundaries
between the electrode and carrier, apart from those grounded.
n ·J is current density normal to the boundary.

The electrode impedance imparted by the electrode-
electrolyte interface was implemented using the Robin
boundary condition, similar to that described in recent
literature [6], [8]. The following subsections describe the
impedances that were used to model the electrochemistry.
These separate impedances are combined in parallel and
incorporated into the aforementioned boundary condition.

1) Non-Faradaic Impedance Model: A constant-phase
expression in the frequency domain can be used to model the
pseudocapacitive behavior, as shown in (1), where K and β

are the constant-phase coefficient and exponent, respectively,
ω is the angular frequency (2π f ), and i =

√
−1.

ZCPA = K(iω)−β (1)

To apply constant-phase behavior in the time-domain,
a technique similar to that used by Sadkowski [9] was
employed. Let s = iω , and apply Ohm’s Law in the complex
frequency (s) domain.

I(s) =
1
K

sβV (s) (2)

For a current step,

I(s) =
∆I
s
, (3)

and thus,
V (s) =

K∆I
sβ+1 . (4)

To determine the voltage response in the time-domain, an
inverse Laplace transform was used. Using Ohm’s Law in

TABLE I
FARADAIC REACTION PARAMETERS, FROM [11].

Parameter Shorthand Value
Anodic Transfer Coefficient αa 0.099

Cathodic Transfer Coefficient αc 0.378
Exchange Current Density i0 9.14×10−3 A/m2

Electrons n 2
Temperature T 298 K

the time-domain, the impedance may be extracted, as in (5),
where t is time in seconds and Γ is the gamma function.
Values for K and β have been empirically determined in
published literature [10]. In this model, β = 0.91 and K =
1.57 Ωm2s−β .

ZCPA,t =
K

Γ(β +1)tβ
(5)

2) Faradaic Impedance Model: The Butler-Volmer form
of the current-overpotential equation was utilized with Ohm’s
Law to provide a faradaic or charge transfer resistance,
shown in (6). This assumes that the electrode is being
operated around its equilibrium potential and the kinetics
of the faradaic reactions are not mass-transport limited.

RCT =
η

i0 {e−αcn f η − eαan f η} (6)

In (6), f is F
RT , where F is Faraday’s constant, R is

the universal gas constant and T is the temperature in
Kelvin. The other parameters are defined in Table I. The
kinetic parameters were determined from potentio-dynamic
control experiments by Richardot et al. [10] for 1.3 cm2

area platinum electrodes in phosphate buffered saline (PBS).
The overpotential (η) was defined at each node on the
electrode surface as the electric potential difference between
the electrode domain and the electrolyte domain.

C. Solver

The created geometrical domains were discretized into
mixed hexahedral and tetrahedral quadratic elements. The
final models had 7381 nodes on the surface of each electrode
geometry. Models were solved in the COMSOL environment,
using the PARDISO direct linear solver coupled with a
damped Newton nonlinear solver. Time-steps were chosen
according to a backward differentiation formula (BDF) al-
gorithm over a 25 µs period, to resemble a constant current
pulse used in a cochlear implant. Electric potential and
current density data were then exported into MATLAB (The
MathWorks, Natick, MA) for post-processing.

III. RESULTS

To quantify and analyze the current density distribution
on the electrode surface, a normalized standard deviation
measured was adopted, similar to that described by Behrend
et al. [7]. Given the constant current supplied to the electrode
domain, it is expected that the mean surface current density
should be equal to the geometric current density javg, given
by (7), where I is the current (± 0.5 mA) and A is the
geometric area of the electrode surface in m2.
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Fig. 2. Current non-uniformity as defined by (8) during an anodic current
pulse for 0.10 mm and 0.30 mm length electrodes.
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Fig. 3. Current non-uniformity as defined by (8) during a cathodic current
pulse for 0.10 mm and 0.30 mm length electrodes.

Hence, the standard deviation of the surface current den-
sity values calculated by the model may be normalized by the
geometric or mean current density as in (8), giving a result
that is comparable across different electrode geometries,
where jn is the nodal current density and N is number of
electrode surface nodes.

javg =
I
A

(7)

σnorm =
1

javg

√
1
N

N

∑
n=1

( jn− j)2 (8)

Fig. 2 and Fig. 3 show the changes in the surface current
non-uniformity, or σnorm, over anodic and cathodic pulses,
respectively. In the anodic case, the initial distribution of
current for both 0.10 mm and 0.30 mm electrodes are
highly non-uniform and heavily biased towards the edges
and vertices of the electrodes, however this falls rapidly
and charge is redistributed resulting in a relatively uniform
distribution by the end of the pulse. The larger 0.30 mm
electrode exhibits a lower rate of charge redistribution when
compared to the 0.10 mm electrode. The σnorm values for
the 0.10 mm and 0.30 mm electrode at the end of the anodic
pulse are 0.061 and 0.119, respectively.
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Fig. 4. Faradaic currents generated over a 0.5 mA anodic current pulse
for 0.10 mm and 0.30 mm length electrodes.
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Fig. 5. Faradaic currents generated over a 0.5 mA cathodic current pulse
for 0.10 mm and 0.30 mm length electrodes.

The current non-uniformity during a cathodic pulse, shown
in Fig. 3, also exhibits rapid charge redistribution to a more
uniform current profile. At approximately 9 µs, however,
σnorm on the 0.10 mm electrode increases to 0.468 at the end
of the pulse. The σnorm on the 0.30 mm electrode behaves
similarly to the anodic case, decreasing monotonically to
0.122 at the end of the pulse.

Fig. 4 and Fig. 5 show anodic and cathodic faradaic cur-
rents over time, respectively. The maximum faradaic current
accounts for 0.022% of the total current for the 0.10 mm
electrode and 0.002% for the 0.30 mm electrode. Similarly
for the cathodic pulses, the faradaic current reaches 38.2%
and 0.340% of total current for 0.10 mm and 0.30 mm
electrodes, respectively. If faradaic current density is plotted
on the electrode surface (Fig. 6), it is found to be enhanced
at the periphery, especially at the corners.

IV. DISCUSSION

For both anodic and cathodic phases, the initial current
distribution on the electrodes resembles the primary current
distribution for a disc electrode, analytically derived by New-
man [11], where the current density is theoretically infinite
at the periphery. For the half-banded electrodes modeled in
this study, the current density is also found to be high at the
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Fig. 6. One corner of the 0.10 mm hemicylindrical electrode surface
plane, showing cathodic faradaic current density distribution at peak faradaic
current. Current density magnitude is also represented by the magnitude of
deformation normal to the base plane (black rectangle). Arrows indicate
edge and vertex enhancement of faradaic current. Legend units are A/m2.

periphery, but highest at the vertices of the electrode surface,
which is not evident in the studies of disc electrodes.

Fig. 2 resembles those presented by Wang et al. [12] for
ideally polarizable disc electrodes, which suggests minimal
faradaic current in the anodic phase for both electrodes.
The faradaic current data in Fig. 4 confirms this, although
the current rises at a non-linear rate, which may become
significant with longer pulse widths. During the cathodic
phase (Fig. 5), a marked increase in the faradaic current
occurs, especially for the 0.10 mm electrode. Examining Fig.
6, it seems that most of this current tends towards the corners,
much like the primary current distribution. This is thought
contribute to the increase in σnorm observed in Fig. 3.

The source for the kinetics parameters used in this model,
Richardot et al. [10], attributes the anodic and cathodic
responses to non-passivating platinum oxide (PtO) formation
and dissolved oxygen reduction, respectively. Voltammetry
data of platinum electrodes in phosphate-buffered saline
provides evidence to support this [13]. The results suggest
a large proportion of current is committed to oxygen re-
duction during cathodic phases, which is consistent with
experimental studies of platinum electrodes in vitro [14].
This oxygen reduction reaction may result in the production
of hydrogen peroxide under conditions where the reaction is
not limited by mass transport [15]. Hydrogen peroxide may
lower pH levels in the perilymph of the cochlea, contributing
to platinum dissolution and potential tissue damage. Future
work will seek to optimize the design of smaller electrodes
to avoid such behavior.

Previous studies have modeled frequency dependent prop-
erties using a Fourier approach [16]. This may be a more
flexible approach when studying full biphasic waveforms.
The Laplace transform derived for the presented models
works well for single current pulses, and spares the added
complexity of translating results back to the time domain.
It should also be noted that the overpotential-independent
forms K and β were used here to reduce the computational
load. This was not thought to be of severe consequence
as non-linear faradaic processes are thought to dominate

the overall non-linearity of the electrode impedance [10].
Platinum electrodes also exhibit other well-defined faradaic
charge transfer processes that are not modeled here, such
as platinum dissolution and gas evolution. Modeling these
reactions may affect the current distribution at higher over-
potentials.

V. CONCLUSION

Finite element methods allow analysis of realistic elec-
trode geometries in neural stimulation applications. The
models presented here focus on specific electrochemical
aspects of these stimulating electrodes. The results of this
study show potential for optimization to avoid peripheral
current enhancement, or “edge effects”. More insight may be
gained through such models by including reversible faradaic
processes, incorporating mass transport of ionic species to
and from the electrode surface and studying biphasic stimu-
lation pulses.
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