
  

 

Abstract— We propose in this paper a biological search 

engine called GOseek, which overcomes the limitation of 

current gene similarity tools. Given a set of genes, GOseek 

returns the most significant genes that are semantically related 

to the given genes. These returned genes are usually annotated 

to one of the Lowest Common Ancestors (LCA) of the Gene 

Ontology (GO) terms annotating the given genes. Most genes 

have several annotation GO terms. Therefore, there may be 

more than one LCA for the GO terms annotating the given 

genes. The LCA annotating the genes that are most 

semantically related to the given gene is the one that receives 

the most aggregate semantic contribution from the GO terms 

annotating the given genes. To identify this LCA, GOseek 

quantifies the contribution of the GO terms annotating the 

given genes to the semantics of their LCAs. That is, it encodes 

the semantic contribution into a numeric format.  GOseek uses 

microarray experiment data to rank result genes based on their 

significance. We evaluated GOseek experimentally and 

compared it with a comparable gene prediction tool. Results 

showed marked improvement over the tool. 

I. INTRODUCTION 

The Gene Ontology (GO) [5] has emerged as one of the 

most important ontology and the most widely used bio-

ontology. Many genomic databases [e.g., [2, 7, 11]) use GO 

annotations, which assign genes to term nodes to describe 

these genes. GO ontology is structured as a Directed Acyclic 

Graphs (DAG). In this graph, GO terms are represented by 

nodes and the different hierarchical relations between the 

terms (mostly “is-a” and “part-of” relations) are 

represented by edges. The “is-a” relation represents the fact 

that a given child term is a subtype of a parent term, and the 

“part-of” relation represents part-whole relationships. When 

a gene product is annotated using GO, the DAG displays the 

term(s)  describing this gene product in such a way that 

reflects how this gene product is related to other gene 

products. 

             A number of tools have been developed to utilize the 

GO annotations stored in the genomic databases. Many of 

these tools are listed on the GO website [5]. These tools 

provide great help to biologists. However, most of them do 

not answer the following question that biologists often have: 

What is the set of genes that is semantically related to a 

given a set of genes. Biologists often need to know the set 

S   of genes that is semantically related to a given set S  of 

genes. Determining the set S   helps in understanding gene-

disease interactions and advanced disease diagnosis. For 

instance, biologists in the UAE are trying to determine the 
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set of genes that are related to the genes involved in Type 2 

Diabetes (T2D) (one out of five people in the UAE between 

the ages of 20 to 79 lives with T2D). Few tools have the 

capability of retrieving the set S  , such as DynGO [6], 

which “retrieves genes and gene products that are relatives 

of input genes based on similar GO annotations, and 

displays the related genes and gene products in an 

association tree” [6, 9]. However, most of these tools 

determine the semantic similarities among genes based 

solely on the proximity of the GO terms annotating these 

genes, while overlook the structural dependencies among 

these GO terms. This may lead to low recall and precision 

of results.  

        We propose in this paper a search engine called 

GOseek (Gene Ontology Search Engine using Enhanced 

Keywords). Given a set of genes, GOseek returns the most 

significant genes that are semantically related to the given 

genes. GOseek overcomes the limitation of current gene 

similarity tools outlined above as follows: (1) it employs the 

concept of existence dependency to determine the structural 

dependencies among the GO terms annotating a given set of 

genes, and (2) it encodes into a numeric format the 

contribution of these terms to the semantics of their Lowest 

Common Ancestor (LCA). The framework of GOseek 

defines semantic similarity measure as a function that 

returns a numerical value reflecting the closeness in meaning 

between the GO terms annotating a given set of genes and 

their LCA. GOseek accepts keyword-based queries with the 

form Q(“g1”, “g2”, .., “gn”), where gi denotes a gene. The 

result of the query Q(“g1”, “g2”) is a set of genes, where 

each gene in the set is semantically related to both g1 and g2. 

GOseek uses microarray experiment data to rank result 

genes based on their significance. We evaluated GOseek 

experimentally and compared it with a comparable gene 

prediction tool called DynGO [6]. Results showed marked 

improvement over the tool.  

II. ASSIGNING SEMANTIC WEIGHT TO LCAS 

Notation 2.1, Keyword Context (KC): A KC is a GO 

term annotated to a query gene product. For example, 

consider Fig. 1 and the query Q(“Br”). The terms 

organ development (GO:0048513) and nephron 

morphogenesis (GO:0072028) are KCs because the gene 

“Br” is annotated with them. 

Most genes have several annotation GO terms. If a query 

contains n gene keywords, there may be m KCs, where m > 

n. Therefore, a strategy is needed for determining the 

relationships among all the occurrences of genes under 

consideration (i.e., the relationships among all KCs). 
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GOseek selects from all KCs of a query subsets, where each 

subset contains the smallest number of KCs that: (1) are 

meaningfully related to each other, and (2) have at least one 

occurrence of each gene keyword annotated to the subset. 

The KCs in each subset are called Related Keyword 

Contexts (RKC). Consider for example Fig. 1 and the query 

Q(“Br”, “GCNTI”). Each of the genes “Br” and “GCNTI” is 

annotated to two GO terms. The RKC candidates are the 

sets: {GO:0048513, GO:0048729}, {GO:0048513, GO:0060993}, 

{GO:0072028, GO:0048729}, and {GO:0072028, GO:0060993}. 

 
Fig. 1: A fragment of GO Graph showing the ontological relationships of 19 

GO terms. Solid edges denote “is-a” relations and dotted edges denote 

“part-of” relations. Some terms show some of the genes annotated to them. 
 

Since there are more than one RKC, there are more than one 

LCA of the RKCs. The genes that are most semantically 

related to input keyword genes are usually annotated to some 

of these LCAs. These LCAs are the ones that receive the 

most aggregate semantic contribution from their RKCs and 

from the terms located in the paths from the RKCs to the 

LCAs. To identify these LCAs, we quantify the contribution 

of RKCs and their ancestors to the semantics of the LCAs.   

   We define the semantic value of a LCA as the 

aggregate contribution of the terms located in the paths from 

RKC to the LCA. A KC closer to the LCA contributes more 

to the semantics of the LCA, while a KC farther from the 

LCA contributes less. We define the contribution of a GO 

term t with regard to a KC KCu to the semantics of a LCA 

LCAv as the Semantic Weight (SW) of t related to KCu 

(denoted by )(tSW
uKC

). The SW of LCAv related to 
u

KC , is 

defined as: 
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where 
c

e  is the semantic contribution factor for the edge 

linking term t with its child term t  and 10 
c

e . We 

define the contribution of 
u

KC to LCAv as depth
decay , where 

decay is a parameter that can be set in the range 0-1, and 

depth is the depth (hierarchical level) of 
u

KC , considering 

the depth of the root term is 0. The ancestors of 
u

KC

contribute less, that is why we have 10 
c

e . The SW of 

LCAv is the aggregate contribution of the semantics of all 

terms located in the path from each RKCKC 
 
to LCAv. 

Thus, we calculate the SW of LCAv as: 
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semantics of all terms located in the path from  RKCKC
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to LCAv. 

      We use as a running example throughout the paper the 

keyword-based query Q(“Br”, “GCNTI”). The query asks 

for the set of genes that are semantically related to both of 

the gene keywords “Br” and “GCNTI”. As shown in Fig. 1: 

(1) the KCs annotating the gene “Br” are organ development 

(GO:0048513) and nephron morphogenesis (GO:0072028), and 

(2) the KCs annotating the gene “GCNTI” are tissue 

morphogenesis (GO:0048729) and kidney morphogenesis 

(GO:0060993). 

 

      Example 1: Consider the query Q(“Br”, “GCNTI”) of 

our running example. Let us quantify the contribution of 

RKCs and their ancestors to the semantics of the LCAs. 

Consider that parameter decay in equation 1 is set to 0.5. 

Table 3 shows the value of depth
decay for each KC. Consider 

that the semantic contribution factors for ‘is-a’ and ‘part-of’ 

relations are 0.7 and 0.6 respectively. Table 2 shows the SW 

value of each LCA in the example. 

 
TABLE I.        THE VALUES OF depth

decay FOR EACH KC IN OUR RUNNING 

EXAMPLE  

KC GO:0072028 GO:0060993 GO:0048513 GO:0048729 
depth

decay  0.25 0.125 0.125 0.125 

 
TABLE 2.        THE LCA OF EACH RKC AND THE SW VALUE OF EACH LCA 

IN OUR RUNNING EXAMPLE  

RKC GO:0072028 

GO:0060993 

GO:0048513G

O:0060993 

GO:0048729 

GO:0072028 

GO:0048729 

GO:0048513 

LCA GO:0001822 GO:0048856 GO:0048856 GO:0048856 

SW(LCA) 0.18 0.124 0.18 0.16 
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III. DETERMINING THE LCA ANNOTATING THE MOST 

SIGNIFICANT GENES 

The degree of association between a LCA and its RKC 

depends on the value of the SW of the LCA. LCAs with 

higher SW values have higher association with their RKCs. 

From the set of LCAs with high SW values, we need to 

identify the one annotating the most interesting (significant) 

genes. The genes that are most semantically related to input 

keyword genes are the ones annotated to the LCA, which 

annotates the most interesting “significant” genes and has a 

high SW value. The framework of GOseek selects the LCA 

with the greatest product of multiplying SW value by the 

number of significant genes annotated to the LCA. The 

framework returns the genes annotated to this LCA as the 

answer for the query. GOseek employs Fisher's exact test 

and gene expression microarray experiment [1] to find the 

number of significant genes that would be found by chance 

to be annotated to LCAs.  

        Consider that the total number of genes in microarray 

is “a”. Consider that the result of the experiment revealed 

“c” significant genes. Consider that the number of genes 

annotated to a LCA LCAv is “b”. Consider that the number 

of genes of interest annotated to LCAv is “k”. The probability 

that the number of significant genes annotated to LCAv is 

exactly “k” out of the “c” significant genes is given by the 

following Fisher's exact test: 
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 “a”: the set of genes in microarray. 

 “b”: the set of genes annotated to the LCA.  

 “c”: the number of significant genes.  

 “k”: the number of genes of interest annotated to 

LCAv. 

The final score of LCAv is the product of multiplying 

SW(LCAv) by Pr(LCAv) as shown in equation 4. 

 

  

      We multiply SW(LCAv) by Pr(LCAv) because each of 

the two measures evaluates different semantics and 

characteristics of LCAv and we look for a LCA that has the 

greatest product of the two measures. If a LCA has more 

than one SW value, we take the maximum value. 

         Example 2: As shown in Table 2, there are two LCAs 

in our running example: GO:0048856 and GO:0001822. One 

of the two LCAs annotates the significant genes that are the 

most semantically related to the input gene keywords “Br” 

and “GCNTI”. Using the microarray information in table 3, 

let us compute the final scores for the two LCAs. Table 4 

shows the number of genes annotated to each of the two 

LCAs. We use equation 3 to compute the probability of 

significant genes as follows: 
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Table 5 shows: (1) the probability of significant genes 

annotated to each LCA, and (2) the final score of each LCA 

computed using equation 4. Since the final score of 

GO:0001822 is greater than those of GO:0048856, the genes 

annotated to GO:0001822 are returned as the answer for the 

query. 

TABLE 3.      THE GENE INFORMATION OF MUS MUSCULUS MICROARRAY 

“AFFYMETRIX GENECHIP MOUSE GENOME 430 2.0 ARRAY” (GPL1261) 

Number of 

genes 

Number of 

unique genes 

Number of 

significant genes 

Number of unique 

significant genes  
45851 13373 18307 553 

 
TABLE 4.        NUMBER OF GENES ANNOTATED TO THE LCAS GO:0048856 

AND GO:0001822 

GO:0048856 GO:0001822 

Number of 

genes 

Number of 

unique genes  

Number of 

genes 

Number of 

unique genes  

42780 10153 15488 7621 

 
TABLE 5.         THE SW VALUE, PROBABILITY OF SIGNIFICANT GENES, AND 

SCORE OF EACH LCA 

RKC GO:0072028 

GO:0060993 

GO:0048513 

GO:0060993 

GO:0048729 

GO:0072028 

GO:0048729 

GO:0048513 

LCA GO:0001822 GO:0048856 GO:0048856 GO:0048856 

SW(LCA) 0.18  0.124 0.18 0.16 
Pr(LCA) 1 0.516 0.516 0.516 

Score(LCA) 0.18 0.064 0.093 0.083 

IV. EXPERIMENTAL RESULTS 

We implemented GOseek in Java, run on Intel(R) 

Core(TM)2 Duo CPU processor, with a CPU of 2.6 GHz and 

4 GB of RAM, under Windows 7. We experimentally 

evaluated the quality of GOseek and compared it with 

DynGO [6]. DynGO “retrieves genes and gene products that 

are relatives of input genes based on similar GO annotations, 

and displays the related genes and gene products in an 

association tree” [6].  

A. Benchmarking Datasets 

Pathways are sets of genes shown to have high functional 

similarity and can be used to validate similarity measures [4, 

8]. A fully described pathway represents the dynamics and 

dependencies among a set of gene/gene products. Therefore, 

we used in our experiments pathways as a reference for 

evaluating and comparing the similarity measures of GOseek 

and [6]. Given a set S of genes belonging to a same pathway, 

each of the two methods should return another set S   of 

genes that is semantically related to set S . In order for sets S

and S  to be semantically related, they should be part of the 

same pathway. 

)4()Pr(*))(()(
vvv

LCALCASWMAXLCAScore 
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          We used for the evaluation two different pathway 

benchmarks: KEGG and Pfam benchmarks. We selected a 

set of 15 human and 15 yeast diverse KEGG pathways; the 

genes were retrieved using the DBGET database [3]. We 

also selected 15 groups of highly related Pfam entries from 

the Sanger Pfam database [10]. For each group, we retrieved 

the corresponding human and yeast gene identifiers from the 

Uniprot database [12]. Assuming that genes belonging to a 

same KEGG pathway are often related to a similar biological 

process, the similarity values computed for this dataset 

should be related to the biological process GO aspect. And, 

assuming that genes which share common domains in a 

Pfam clan often have a similar molecular function, the 

similarity values computed for this second dataset should be 

related to the molecular function GO aspect. 

B. Evaluating Recall and Precision 

For each result gene x we constructed a feature vector )( x  

relative to all other genes in the result. Each result gene is 

represented by its best functional distance to all other result 

genes. The distance between two genes x and y is given by 

||)()(|| yx  . We clustered results based on their 

similarity with the KEGG and Pfam pathway benchmarks. 

The similarity between result vector x and pathway vector y 

was taken as their normalized dot product: 

 

                                )5(
||||||||

,
),(

yx
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Each cluster contains results, whose similarity value with the 

pathways is 0.3, 0.5, 0.7, 0.8, or 1. For each cluster, we 

measured the recall (or true positive rate) and precision of 

GOseek and of DynGO. Let: (1) GP be all genes in a 

pathway and n be the number of these genes, and (2) GM be 

the m genes retrieved by a method as semantically related to 

input gene keywords: 

 

 Recall = (|GM    GP | / n)                      (6)                       

 Precision = (|GM   GP| / m)                  (7)  
 

Tables 6-10 show the results. As the tables show: (1) as the 

similarity between results and pathways increases, recall 

decreases and precision increases, which is expected since 

greater similarity means fewer results with higher precision, 

and (2) GOseek outperforms DynGO [6] in all results. 

       In summary, the recall and precision values for the two 

benchmarking datasets show that GOseek outperforms the 

DynGO method. The results reveal the robustness of the 

GOseek’s method and its ability to reflect the semantic 

relationships among gene annotations. 

V. CONCLUSION 

We proposed in this paper a biological search engine called 

GOseek, which overcomes the limitation of current gene 

similarity tools. Given a set of genes, GOseek returns the 

most significant genes that are semantically related to the  
 

TABLE 6.        CLUSTER WHOSE SIMILARITY WITH THE PATHWAYS IS 0.3 

Recall Precision 

GOseek DynGO GOseek DynGO 

0.92 0.81 0.58 0.34 

 
TABLE 7.        CLUSTER WHOSE SIMILARITY WITH THE PATHWAYS IS 0.5 

 
TABLE 8.        CLUSTER WHOSE SIMILARITY WITH THE PATHWAYS IS 0.7 

 
TABLE 9.        CLUSTER WHOSE SIMILARITY WITH THE PATHWAYS IS 0.8 

 
TABLE 10.        CLUSTER WHOSE SIMILARITY WITH THE PATHWAYS IS 1 

 

given genes. We experimentally evaluated the quality of 

GOseek and compared it with DynGO [6]. Results showed 

that GOseek outperforms DynGO. The results showed also 

the robustness of GOseek to reflect the semantic 

relationships among gene annotations. 
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Recall Precision 

GOseek DynGO GOseek DynGO 

0.8 0.68 0.72 0.58 

Recall Precision 

GOseek DynGO GOseek DynGO 

0.88 0.81 0.67 0.45 

Recall Precision 

GOseek DynGO GOseek DynGO 

0.68 0.52 0.83 0.72 

Recall Precision 

GOseek DynGO GOseek DynGO 

0.75 0.58 0.78 0.64 
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