
Code Generator for Distributed Parameter Biological Model Simulation

with PDE Numerical Schemes

Florencio Rusty Punzalan, Yoshiharu Yamashita, Masanari Kawabata, Takao Shimayoshi,

Hiroaki Kuwabara, Yoshitoshi Kunieda and Akira Amano

Abstract— The physiological simulation at the tissue and
organ level typically involves the handling of partial differ-
ential equations (PDEs). Boundary conditions and in cases like
pharmacokinetics, distributed parameters add to the complexity
of the PDE solution. These factors make most PDE solutions
and their corresponding program codes tailored for specific
problems. We propose a general approach for handling PDEs
in computational models using a replacement scheme for dis-
cretization. This method allows for the handling of the different
PDE types. The replacement scheme involves substituting all the
partial differential terms with the numerical solution equations.
Once the model equations are discretized with the numerical
solution scheme, instances of the equations are generated to
undergo dependency analysis. The result of the dependency
analysis is then used to determine the simulation loop structure
and generate the program code.

I. INTRODUCTION

The lumped parameter system has been widely used

for the mathematical modelling of physical and biological

functions due to its ease of modelling and high analyticity

[1]. However, organ function simulation and analysis in-

creasingly requires a distributed parameter system because

it necessitates distribution of physiological structures and

spatial localization of intracellular materials.

Biological function model description languages such as

SBML [2], CellML [3] and PHML [4] and their wide-

ranging sample models are examples of a lumped parameter

system. On the other hand, FieldML [5] and FML [6] are

description languages capable of describing a distributed

parameter system. However, these languages are not versatile

for hybrid lumped-distributed parameter physiological sys-

tems. Their use and interface are also limited to a single

tool or implementation like OpenCMISS and Chaste.

The structure of simulation programs of a lumped pa-

rameter system described by ordinary differential equations

(ODEs) is relatively homogeneous. However, a distributed

parameter system described by partial differential equations

(PDEs) can lead to various solutions depending on the prob-

lem’s initial value, boundary condition, spatial discretization

and equation form. The complexity and size of the biological

function models in distributed parameter systems make it

F.R. Punzalan, M. Kawabata and A. Amano are with the Department
of Bioinformatics, Ritsumeikan Univerisity, Shiga-ken, 525-8577, Japan
(phone:+81-77-561-2584; e-mail:floren@fc.ritsumei.ac.jp)

Y. Yamashita, H. Kuwabara and Y. Kunieda are with the Department of
Informatics, Ritsumeikan Univerisity, Shiga-ken, 525-8577, Japan)

T. Shimayoshi is with ASTEM RI, Kyoto, 600-8813, Japan
The authors would like to thank the Japan Ministry of Education, Culture,

Sports, Science and Technology (MEXT) for the Grant-in-Aid for Scientific
Research (Kakenhi) funding

difficult for life scientists to implement and generate the

necessary program code.

In this study, we propose a code generation system that

can automatically generate program codes for distributed

parameter system simulations described by PDEs. Through

this system, various numerical solution methods can be

used to discretize the model equations in an organ-level

simulation. It allows users to specify the finite difference

scheme that they want to use in their simulation.

II. METHOD

A. Numerical Schemes for Partial Differential Equations

A partial differential equation is defined as the relation-

ship between a function, v(d1, d2, . . . , dnd), and the partial

derivative of its independent variables (d1, d2, . . . , dnd
) as

shown by

F

(

v, d1, d2, . . . , dnd
,
∂v

∂d1
,
∂2v

∂d21
, . . . ,

∂v

∂d2
,
∂2v

∂d22
, . . . ,

∂v

∂dnd

,
∂2v

∂d2nd

, . . .

)

= 0, (1)

where F is a continuous function vector and nd is the

number of dimensions in the multi-dimensional space.

The procedure for solving the unknown function v in

equation (1) is called the solution to the PDE. One of the

numerical techniques used to approximate the solution to

PDEs is the Finite Difference Method (FDM). FDM is based

on approximating the PDEs through difference quotients and

normally consists of three steps. First, an orthogonal grid

or mesh where we want to find an approximate solution is

generated. Then, the derivatives in a PDE or PDE system of

equations are substituted with the finite difference schemes.

Finally, the resulting linear/nonlinear system of algebraic

equations is solved.

The target grid space has the same number of dimensions

(nd) as independent variables in the PDE. The local distance

between the adjacent points in each dimension is defined as

∆d1,∆d2, . . . ,∆dnd
.

Finite difference schemes cover a wide array of solutions

for PDEs. These solutions can be roughly divided into single-

step and multi-step schemes. Single-step schemes approxi-

mates the solution by replacing the differential terms PDE

with the corresponding finite difference terms. To illustrate

single-step schemes, let us use the one-dimensional reaction-

diffusion equation given by

∂v

∂t
= D

∂2v

∂x2
+ f(v), (2)

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 1494



TABLE I

FINITE DIFFERENCE SCHEME EXAMPLES FOR THE ONE-DIMENSIONAL

REACTION-DIFFUSION EQUATION.

(Scheme) Discretization for 1D Reaction-Diffusion

FTCS
vn+1,j − vn,j

∆t
= D

vn,j+1 − 2vn,j + vn,j−1

(∆x)2
+ f(vn,j )

BTCS
vn+1,j − vn,j

∆t
= D

vn+1,j+1 − 2vn+1,j + vn+1,j−1

(∆x)2
+ f(vn,j )

where f(v) is the reaction function, D is the diffusion

coefficient and t and x are independent variables. v can be

expressed as vn,j , where the index terms n and j are used

for the time and space dimension, respectively.

Applying the FTCS (Forward-Time Centered-Space) finite

differencing scheme to equation (2) results to

vn+1,j − vn,j

∆t
= D

vn,j+1 − 2vn,j + vn,j−1

(∆x)2
+f(vn,j). (3)

The PDE discretization involves the replacement of the

differential and arithmetic variables with their discrete coun-

terpart given by

v → vj1,j2,...,jn
d

(4)

y → yj1,j2,...,jn
d

(5)

and of the differential operators, L
(q)
p , with the specified PDE

discretization scheme given by

L
(1)
1 (v) → L∆1,1(v), (6)

...

L
(mn

d
)

nd
(v) → L∆nd,mn

d
(v), (7)

where L∆p,q(v) corresponds to the discretized equation of

the qth derivative of v with respect to p. Aside from the

explicit FTCS scheme in equation (3), other single-step

finite difference schemes like the fully-implicit Backward-

Time Centered-Space (BTCS) method (Table I) offer more

numerical stability.

Our study will be limited to the code generation of

biological simulations using explicit, single-step FDM. If an

implicit scheme is used, it is necessary to use solvers for

nonlinear systems of equations in the generated code and this

is beyond the capability of our system as of the moment.

B. Simulation Model Discretization and Code Generation

System Description

The main goal of our system is to automatically generate

program codes for multidimensional simulations involving

PDEs. This is an extension of the system we published

earlier for generating biological simulation codes using ODE

solving schemes [7]. In addition, the input files and algorithm

include extensions from another study, which implements

handling of multiphysics biological simulation [8].

The system is composed of three stages, namely, single-

step PDE discretization, loop structure creation and program

code generation. The stages are further discussed in the

following subsections.

def method FTCSDiffusion1D as
def variables pdesolvar as

vartype diffvar: {v};
vartype arithvar: {y};
vartype constvar: {z};
vartype dimensionvar: {t, x};
vartype indexvar: {n, j};
vartype deltavar: {∆t, ∆x};

enddef;
v ≡ vn,j ;
y ≡ yn,j ;
∂v

∂t
≡
vn+1,j − vn,j

∆t
;

∂2v

∂x2
≡
vn,j+1 − 2vn,j + vn,j−1

(∆x)2
;

enddef;

Fig. 1. The TecML information for the FTCS method in one dimension.
The first part lists all the variables and their types while the second
part enumerates the variable and operator discretization equations. The
information is represented in COR notation [9].

1) Single-Step PDE Discretization: The first stage in the

system involves the discretization of the model variables,

equations and boundary conditions with their corresponding

discrete terms. Equations (4)–(7) represent the variable and

differential operator discretization.

The inputs for the first stage are composed of a CellML or

PHML file (cell model), a TecML file (differential solution

scheme) and a RelML file (relation file). The TecML (Time

Evolution Calculation Markup Language) file, introduced in

our previous study [7] and describes ODE solution schemes,

was extended in this study to describe the finite difference

solutions for PDEs. We used RelML (Relation Markup Lan-

guage) to describe the relationship between a CellML/PHML

file and TecML file. The previous version of RelML maps the

variables in the cell model file to their corresponding type

in the numerical solution scheme file. This was expanded

to include information about the morphology and boundary

conditions for the underlying PDEs.

The single-step replacement of the model terms depends

on the numerical scheme described in the TecML file. The

TecML file lists the identifier for the predefined variable

types, namely, differential, arithmetic and constants. It also

contains the variables corresponding to each dimension as

well as their respective indices and unit change per dimen-

sion. The information of a sample TecML file shown in Fig.

1 describes the FTCS scheme in one-dimensional space.

The system presents a general way of discretizing the

PDEs by using the information provided with the geometry

mesh points. The simulation mesh can be a 1D line, 2D recti-

linear grid, or 3D cube. The geometry, boundary conditions,

and distributed parameters are described as follows:

1) The geometry value is indicated for all nodes in the

geometry mesh. The mesh node takes a value of 1

(true) value if the node contains a material (i.e., part of

the biological simulation morphology) and a 0 (false)

value if it is part of the background (i.e., empty space)

(Fig.2(b)).

2) The boundary condition information, which contains

either a Dirichlet or Neumann condition, are specified

1495



0 1 1 1 0

1 1 0 1 1

1 1 0 0 1

1 1 0 0 1

1 1 0 1 1

0 1 1 1 0

0 5 1 6 0

7 3 0 2 9

2 3 0 0 3

2 3 0 0 3

8 3 0 7 10

0 11 4 12 0

(a) 2D (b) morphology (c) boundary

morphology data condition id

Fig. 2. Morphology data (b) and the boundary condition id (c) specified
in a RelML file corresponding to the morphology image information (a).

using unique boundary identification numbers. These

numbers are used as reference to describe the bound-

ary discretization or value for each bounded variable

(Fig.2(c)).

3) In instances where distributed parameters are needed

for the simulation, each distributed parameter has a

designated file that contains the list of all the mesh

nodes and the parameter value for each node.

The geometry, boundary condition, and distributed param-

eter mesh nodes and values are all written in individual

CSV (comma-separated values) files. The file names are

supplied in the RelML file to guide the system during the

discretization process. Figure 3 shows the information in the

RelML file, including the geometry, distributed parameter

and boundary condition file name and identification numbers.

These information are used to generate the discrete model

equations for all instances of time and space to achieve

generality in handling different numerical solution schemes

and boundary conditions.

2) Loop Structure and Program Code Generation: Once

all the discretized equations are generated, they are con-

structed into do-while loops by identifying repeating equa-

tions. Finally, the program code for C or C Cuda is generated

from the loop structure [7]. The current implementation

allows handling of implicit functions only in the code gen-

eration part.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Two sets of experiments were done to test the system.

In the first experiment, a homogeneous and heterogeneous

transmural sheet model of the cardiac muscle were used

to show the distributed parameter model handling. The

Luo-Rudy 1991 (LR1) model with the diffusion equation

in two dimensions [10] was used for both models. The

FTCS scheme was used to discretize the model equations. A

100×100 regular grid mesh was used in both simulations. In

the heterogeneous grid, the value of the potassium channel

conductance GK varies for each section in the myocardial

wall. The 15/100, 50/100 and 35/100 sections of the mesh

represent the endocardial, middle and epicardial part of the

cardiac wall, respectively. These sections has conductance

values of 154%, 59% and 100 % of the original value from

the LR1 model [11].

Figure 4 shows part of the expanded equations of the LR1

model equations for all instances of time and space. This

results to a program code that has a triple-loop structure

nested in three layers. The boundary conditions are also

included inside the loops for the spatial dimensions. A

def method LR1991 FTCSDiffusion2D as
def cellml Luo-Rudy1991-2D as

filename “Luo-Rudy1991-2D.cellml”;
enddef;
def tecml FTCSDiffusion2D as

filename “FTCSDiffusion2D.tecml”;
enddef;
def variables pdesolvar as

vartype diffvar: {v,m, h, . . .};
vartype arithvar: {INa, Isi, . . .};
vartype constvar: {R, T, . . .};
vartype dimensionvar: {t, x};
vartype indexvar: {n, j};

enddef;
def morphology 2D WallModel as

filename “geometry.csv”;
enddef;
def boundarycondition 2D WallModelBC as

varname v;
filename “boudarycondition.csv”;

enddef;
def parametercondition 2D WallModelGks as

varname GKs;
filename “Gks.csv”;

enddef;
def boundary-condition-id “1” as
∂v

∂x
= 0;

enddef;
enddef;

Fig. 3. Information contained in the RelML file for 2D Luo-Rudy 1991
excitation propagation model combined with the FTCS scheme. The first
part describes the relation between the variables in the two files. The spatial
geometry, spatial boundary condition, and the actual boundary condition
information are also included.

/***** nondifferential equations *****/
αm[1][1][1] = 0.32 ∗ (Vm[1][1][1] + 47.13)/(1 − exp(· · ·
αh[1][1][1] = (Vm[1][1][1] < −40)?0.135 ∗ exp(· · ·
...
/***** differential equations *****/
Vm[1 + 1][1][1] = Vm[1][1][1] + (−1/C[1][1][1]) ∗ (Istim · · ·
m[1 + 1][1][1] = m[1][1][1] + αm[1][1][1] ∗ (1−m · · ·
...

Fig. 4. Equations for the mesh point (1, 1, 1) that are generated by first
step of the proposed system by using the FTCS scheme on the Luo-Rudy
1991 2D excitation propagation model.

section of the resulting program code generated by the

proposed system is shown in Fig. 5.

The stimulation current program code was manually in-

serted in this experiment in order to create the formation of

a spiral wave during simulation. Note that this can be repre-

sented as a stimulation current equation with a distributed

parameter. The difference between the homogeneous and

distributed parameter mesh was observed with the former

allowing for the formation of a spiral wave (Fig. 6).

In the second experiment, the same equations and param-

eters were applied to different morphology models. A simple

ring shape and a middle heart cross-section slice shape were

used to show the handling of complex morphology, boundary

condition and distributed parameter data. The sample simu-

1496



n = 0;

do {
j = 1;

do {
l = 1;

do {
if (j==1) V m[n+1][0][l]=0;

...
V m[n+1][j][l] = V m[n][j][l] + · · ·
.
..
l = l+1;

} while (l<=100);

j = j+1;

} while (j<=100);

n = n+1;

} while (n<=399);

Fig. 5. The resulting program code generated by the second step of
the proposed system for the combination of Luo-Rudy 1991 2D excitation
propagation model and FTCS scheme. In this example, all the unknown
variables can be calculated by explicit calculation, thus the sequential
calculation program code is generated.

�

�

��������� ��������� �����	���


���
�����
�	���


���������������������������

���������������������������

Fig. 6. The action potential propagation simulation of the Luo-Rudy 1991
model in a sheet with distributed (A) and homogeneous (B) parameters for
the potassium channel conductance GK . Due to the differences in the action
potential duration (APD) of the sheet with distributed parameters, a spiral
wave did not form during simulation. However, a spiral formed for the sheet
with homogeneous parameters.

lation results and excitation patterns are shown in Fig. 7.

The system poses some limitations on the generation of

program codes in terms of handling a large number of

equations. For the Luo-Rudy model simulation, there are

a total of eight differential and 31 arithmetic equations. It

also includes 12 boundary instances from four boundary

condition equations in a 2D mesh. For a simulation with

100 × 100 mesh size and 400 time steps, this means a

total of at least 172 million equations that need to undergo

dependency analysis. Since it is not feasible to handle such

number of equations, the system uses a sample size in each

dimension to determine the variable dependencies instead.

In addition, efficient program codes can be generated for

implicit equations only if implicit solutions are needed in all

the indices or dimensions.

IV. CONCLUSIONS

In this study, we proposed a general way of applying

finite difference schemes to partial differential equations on

uniform rectilinear grids. Our system handles morphology

���

��

��

��

��

�

� �� �� �� �� ���

��	
��
	��� ��		�� �����
	���
������� ��� ��� ��� � �� ��

������

� �

Fig. 7. The cardiac morphology and respective sample result for a ring-
shaped tissue (A) and middle heart cross-section (B) simulation of the Luo-
Rudy 1991 model. A mesh size of 100×100 was used for the simulations.
The mesh was divided into the endocardial, mid and epicardial sections for
the middle heart cross-section morphology.

and boundary condition information automatically using a

markup language file. Through the proposed method, it is

possible to automatically generate simulation program codes

for physical and biological functions modeled by distributed

parameter systems.

For further studies, we would like to support other dis-

cretization methods like finite volume (FVM) or finite el-

ement (FEM) method to handle more complex geometries.

FDM was used for its simplicity and ease of implementation

but it is not suited for complex geometries. FVM and FEM

will also allow us to handle unequal grid spacing. In addition,

the system also needs to include handling of implicit schemes

and code generation of nonlinear systems of equation solvers.

REFERENCES

[1] P. Hunter, P. Robbins and D. Noble. “The IUPS human physiome
project.” Eur J Physiol, vol. 445(1), pp. 1–9, 2002.

[2] M. Hucka, H. Kitano et al. “The systems biology markup language
(sbml): A medium for representation and exchange of biochemical
network models.” Bioinformatics, vol. 19(4), pp. 524–531, 2003.

[3] A.A. Cuellar, C.M. Lloyd, P.F. Nielsen, D.P. Bullivant, D.P. Nickerson
and P.J. Hunter. “An overview of cellml 1.1, a biological model
description language.” SIMULATION, vol. 79(12), pp. 740–747, 2003.

[4] Y. Asai, Y. Suzuki, Y. Kido, H. Oka, E. Heien, M. Nakanishi, T.
Urai, K. Hagihara, Y. Kurachi and T. Nomura. “Specifications of
insilicoML 1.0: A multilevel biophysical model description language.”
The Journal of Physiological Sciences, vol. 58(7), pp. 447–458, 2008.

[5] G. Christie, P. Nielsen, S. Blackett, C. Bradley and P. Hunter.
“FieldML: concepts and implementation.” Phil. Trans. R. Soc. A, vol.
367, pp. 1869-1884, 2009.

[6] D. Chang, N. Lovell and S. Dokos. “Field Markup Language:
Biological field representation in XML.” in Proc. IEEE EMB Conf.,
2007, pp. 402-405.

[7] F.R. Punzalan, Y. Yamashita, N. Soejima, M. Kawabata, T. Shi-
mayoshi, H. Kuwabara, Y. Kunieda and A. Amano. “A CellML Sim-
ulation Compiler and Code Generator using ODE Solving Schemes
Description.” Source Code for Biology and Medicine, vol.7(1):11,
2012.

[8] M. Kawabata, Y. Yamashita, F.R. Punzalan, Y. Kunieda and A.
Amano. “A program code generator for multiphysics biological
simulation using markup languages.” in Proc. Int. Workshop Innovative

Architecture for Future Generation High-Performance Processors and

Systems, 2012.
[9] A. Garny, D. Nickerson, J. Cooper, R. Santos, A. Miller, S. McK-

eever, P. Nielsen and P. Hunter. “CellML and associated tools and
techniques.” Phil. Trans. R. Soc. A, vol. 366(1878), pp.3017-3043,
2008.

[10] R.B. Huffaker, J.N. Weiss, B. Kogan. “Effects of early afterdepolar-
izations on reentry in cardiac tissue: a simulation study.” Am J Physiol

Heart Circ Physiol., vol. 292(6), H3089-102, 2007.
[11] T. Suzuki, M. Inagaki, T. Yao, T. Namba, R. Suzuki, M. Sugimachi, K.

Nakazawa. “How M cell affects the polarity of T waves: a computer
simulation of the transmural distribution of APD in the ventricle wall.”
Technical Report of IEICE, MBE vol. 101(406), pp. 21-28, 2001.

1497


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

