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Abstract— In the post-genomic era, unveiling causal traits
in the complex mechanisms that involve a number of diseases
has been highlighted as one of the key goals. Much research
has recently suggested integrative approaches of both genome-
wide association studies (GWAS) and gene expression profiling-
based studies provide greater insight of the mechanism than
utilizing only one. In this paper, we propose a novel method,
sparse generalized canonical correlation analysis (SGCCA), to
integrate multiple biological data such as genetic markers, gene
expressions, and disease phenotypes. The proposed method
provides a powerful approach to comprehensively analyze
complex biological mechanism while utilizing the multiple data
simultaneously. The new method is also designed to identify
a few of the elements significantly involved in the system
among a large number of elements within the variable sets.
The advantage of the method as well lies in the output of
easily interpretable solutions. To verify the performance of
SGCCA, we performed experiments with simulation data and
human brain data of psychiatric diseases. Its capability to detect
significant elements of the sets and the relations of the complex
system is assessed.

I. INTRODUCTION

Discovering causal traits in complex mechanisms involv-

ing multi diseases is one of the key goals in the post-

genomic era. GWAS have achieved successes in uncovering

significantly important genetic markers of interests. Never-

theless, the majority of GWAS perform the analysis with

individual loci independently, which makes a single genetic

variant explanation only a small proportion of the phenotypic

variations, and often fails to find statistically significant

variations after multiple testing corrections. Alternatively, a

number of research studies for expression quantitative trait

loci (eQTL) has uncovered the genetic traits via gene sets or

pathway association analysis. However due to two specific

limitations, first that global assays of gene expressions tend

to be biased toward more expressed measurements, and

secondly that the relationships between gene expressions and

disease phenotypes are ignored in the model, the integrative

approaches taking into account multiple forms of data can

provide great insights to capture associations comprehen-

sively.

The integrations of GWAS and gene expression profiling-

based studies (e.g., eQTL) have been attempted recently, and
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they have emphasized the important roles of the method-

ology [1], [2], [3], [4]. Most of the integrative approaches

used step-by-step processes to integrate the data. Hsu et

al. performed a four-stage approach, in which meta-analysis

performed separately in each stage to prioritize the signif-

icant genes of interests [2]. Xiong et al. computed scores

from expression-based tests and SNP (single-nucleotide

polymorphism)-based tests separately and integrated the

scores using z-score sum, Fisher’s method, and rank sum [3].

However, the limitations of these attempted integration meth-

ods are that some significant elements can be filtered out

through the various stages while analyzing the data in pieces.

In this paper, we propose a sparse version of generalized

canonical correlation analysis (SGCCA) to focus on two

problems. First, we need a method to integrate biological data

such as genetic markers, gene expressions, and disease phe-

notypes while analyzing them simultaneously. Rather than

the investigation of each study independently and combining

them in the traditional integrative methods, the proposed

integrative approach can leverage the power to identify the

pathway of the biological system by complementing the

lack each has. For the problem, we adapted the generalized

canonical correlation analysis (GCCA) that provides a pow-

erful approach to dissect complicated mechanisms in which

multiple variables cooperate associatively. Secondly, we need

to provide easily interpretable solutions of GCCA as well

as taking into account the group effects of the data since

only a few elements of the data sets tend to be significantly

associated to the traits of interests. Moreover GCCA lacks the

power, especially when the number of independent variables

is much larger than the number of samples. For this reason

we propose a novel sparse method of GCCA (SGCCA)

and take advantage of the integration of biological data and

knowledge to conclusively identify the traits associated in

the mechanism.

II. METHODS

Let X be K observable variables concerning the rela-

tionships between the blocks, i.e., X = {X1, X2, . . . , XK}.
The observations are obtained from n samples, and can

be represented by latent variables (ξ) which are the linear

combinations of observable variables.

ξk = Xkvk, (1)

where vk is a coefficient vector of the Xk. pk indicates the

number of independent variables of each block, e.g., Xk ∈
ℜn×pk .
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Fig. 1: A conceptual model of the integration of multiple

data such as SNPs, gene expressions, and disease phenotypes.

Independent variables are represented by squares and latent

variables by circles

The conceptual model for the system must be designed in

advance as shown in Fig. 1. In the model, C indicates the

connectivity between the latent variables (C ∈ ℜK×K), and

similarly, hk,j shows the set of all blocks such that the arrow

points from l block to k block.

The model includes two internal relation models such as

outer relations and inner relations. The outer relations takes

into account the relations between the independent variables

and their latent variable (2), while the inner relations rep-

resents the relations between latent variables of the blocks

(3).

Xk = b0
k + ξkb⊤k (2)

ξk = γ0
k +

K
∑

k 6=l,l=1

hk,lγk,lξl, (3)

where b0
k and γ0

k are the intercepts of the relations.

We find the associations of significant elements of the

blocks maximizing the total correlations. The solutions of

GCCA have been proposed [5], [6], [7]. In order to estimate

the latent variables, we use the Wold’s procedure rather

than Lohmoller’s since the Wold’s procedure guarantees its

convergence [7].

In the Wold’s procedure, we introduce the elastic net

penalization into the multiple regression when computing

v
(s)
k for the sparsity and the group effect [8].

v
(s)
k = arg min

v
(s)
k

|ξk − Xkv
(s)
k |

2
+λ1

∑

|v(s)
k |+λ2

∑

||v(s)
k ||

2

(4)

where λ1 and λ2 are the penalty parameters respectively.

In the association studies, cis-regularization plays an im-

portant role in uncovering polymorphic regions including

transcription factor binding sites (TFBS), enhancers and

promoters which have been reported to directly control gene

expressions [9], [10], [11]. In order to take advantage of the

knowledge, we also introduced a variable for a prior weight

when computing the coefficient, v
(s)
k .

υ
(s)
k = diag(ωk) · v(s)

k , (5)

where ωk is the diagonal matrix for the weighting coeffi-

cients of each block (i.e., ωk ∈ ℜpk×pk ). We assume that the

cis-acting SNPs are located within 1kb of the corresponding

genes as the majority of research has shown [10].

Rewrite (4) with cis-regularization,

arg min |ξk − Xkυ
(s)
k |

2
+ λ1

∑

|υ(s)
k |+ λ2

∑

||υ(s)
k ||

2
.

(6)

Then, it can be re-written introducing a scaling factor (1+λ2)
to prevent double shrinkage [8], [12],

arg min υ
(s)
k

⊤(X⊤k Xk + λ2I

1 + λ2

)

υ
(s)
k − 2ξkXkυ

(s)
k +λ1|υ(s)

k |.
(7)

For efficient computing, the univariate soft-thresholding

(UST) strategy is applied, setting λ2 →∞ [8], [12].

υ
(s)
k =

(

|ξ⊤k Xiυ
(s)
k | −

λ1

2

)

+
sign

(

ξ⊤k Xiυ
(s)
k

)

(8)

where (F )+ = F if F > 0 and (F )+ = 0 if F ≤ 0.

After estimating the latent variables, SGCCA estimates

coefficients of both the inner relations and the outer relations

models as well as their intercepts. The parameters bk of the

inner relations can be estimated by regressing ξk on other

latent variables which point to ξk. For γk of the outer rela-

tions, only the columns of Xk, where the corresponding vk is

non-zero, are computed by regressing on ξk to preserve the

sparsity. The algorithm is described in detail in Algorithm 1.

A. Tuning penalty parameters

K-fold cross-validation is mainly used to optimize the

penalty parameters [8], [12], [13]. However, it needs very

large memory spaces, and it is computationally costly to

run due to the large number of variables. For efficiency, we

designed an algorithm using a K-mean clustering based on

the ideas that insignificant coefficients tend to place near

zero value. The method initializes two classes setting both

zero and the biggest coefficient values as initial values,

and performs the traditional UST method repeatedly until

a desired number of significant coefficients (η) leave. Then,

it finds the optimal parameter such that it makes a maximum

correlation in the multiple regressions among the remaining

significant coefficients.

III. EXPERIMENT RESULTS

The goal of this study is to identify the actual significant

elements of the sets among large numbers of putative ele-

ments in the complex system where multiple heterogenous

data cooperate closely and estimate the internal relations of

the mechanism. To assess the performance of the proposed

method, we conducted the experiments with simulation data.

A. Simulation study

In the simulation study, we generated the simulation data

on the underlying designed system in Fig. 2, where only five

elements of both X and Y are designated as significant, which

means non-zero coefficients of the corresponding loading

vectors are co-related to Z. A various number of the zero-

mean errors are added up into the sets of both X and Y. We

tested how many of the five elements designated as ground
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Algorithm 1 SGCCA

1: r ← 1
2: For all k, standardize Xk

3: v
(0)
k =

√
n

v
(0)
k

‖Xkv
(0)
k
‖

4: ξ
(0)
k = Xkv

(0)
k

5: s← 0
6: repeat

7: For all k,

8: Update prior weight ωk.

9: r
(s)
k,l =

{

corr(Xkυ
(s)
k , Xlυ

(s+1)
l ) if l < k

corr(Xkυ
(s)
k , Xlυ

(s)
l ) if l > k.

10: w
(s)
k,l = sign(r

(s)
k,l )

11: ξ
(s)
k =

∑k−1
l=1 ck,lw

(s)
k,l Xlυ

(s+1)
l +

∑N

l=k+1 ck,lw
(s)
k,l Xlυ

(s)
l

12: υ
(s)
k =

(

|ξ⊤Xiυ
(s)
k | − λ1

2

)

+
sign

(

ξ⊤Xiυ
(s)
k

)

13: v
(s+1)
k =

√
n

v
(s+1)
k

Xkv
(s+1)
k

14: ξ
(s+1)
k = Xkv

(s+1)
k

15: s← s + 1
16: until

∑N−1
i=1

∑N

j=i+1 corr(ξi, ξj) converge

17: Regress ξk on
∑K

k 6=l,l=1 hk,lγk,lξl

18: Regress only the columns of Xk, which are non-zero

columns of vk, on ξk

19: Estimate the intercepts b0
k and γ0

k

20: if
∑K−1

i=1

∑K

j=i+1 corr(ξi, ξj) ≤ ρ then

21: Exit

22: else

23: Xk ← Xk − (1(b0
k)
⊤

+ ξk(bk)
⊤

)
24: r ← r + 1
25: Goto step 2

26: end if

Fig. 2: A simple model with three blocks of variables for the

simulation study.

truth among the large number of whole sets are identified

by performing the proposed method. The precision and the

sensitivity were measured by varying the size of variables

and samples, and the results are depicted in Fig. 3. The pre-

cision appears to increase as the number of samples increase,

and the number of variables decrease. However, the result

shows the powerful performance of SGCCA with higher

precision than at least 0.8. The sensitivity is interestingly

very high no matter what the size is, since the false negatives

of the experiments were very small (≈ 0). The experiment

results prove the powerful capability of the method to detect

(a) (b)

Fig. 3: The precision and sensitivity assessment with the

simulation data for evaluating the performance of SGCCA.

significant elements in the complex systems where multiple

models are combined.

B. Human brain data for psychiatric diseases

We applied the proposed method to human brain data

comprising of psychiatric diseases such as: schizophrenia,

bipolar disorder, and major depression from 131 patients in-

cluding 44 controls. The human brain data includes 852,963

SNPs and 25,833 gene expression measurements for each

individual.

First, we performed GWAS and eQTL studies separately

using the traditional method. No significant SNPs were ob-

served after multiple testing corrections in GWAS, while only

two of FGF5 and DYNC1I2 were identified as significant

genes in eQTL. By combining the results of the step-by-

step integrative models (not literal integration), it may fail to

discover the significant causal traits.

The sets of SNPs and genes identified by the proposed

method are listed in Table. I and Table. II, where the top

eleven ranked elements are listed among a total of both 93

genes and 691 SNPs. Both of FGF5 and DYNC1I2, which

were discovered by the traditional method, are also identified

by the proposed method. The results of the experiment

revealed that the interaction of 93 genes and 691 SNPs

play an important role in the mechanism of psychiatric

disorders. FGF5 gene was identified as an oncogene, as

well as involving various biological processes [14]. MDGA1

gene, which was not identified in the traditional method,

was reported to confer risk to schizophrenia and bipolar

disorder [15].

SGCCA takes into account grouping effects of SNPs. For

instance, the SNPs of RS11192242, RS4918142, RS2140837,

and RS2177744 are located nearby each other and show

linkage disequilibrium.

All parameters of the model were estimated, and the puta-

tive biological model for psychiatric disorders is illustrated in

Fig. 4, where the numbers above arrows show the correlation

between the blocks. The model appeared to have strong

correlations of -0.78, -0.52, and 0.72, between the blocks.

IV. CONCLUSIONS

In this paper we proposed a novel method of the sparse

generalized canonical correlation analysis. SGCCA has the

power to detect significant elements of the multi-block
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TABLE I: The top eleven ranked genes among a total of 93

genes identified by the proposed method.

Genes Chr. Start Stop Coef. P-value∗

FGF5 4 81406766 81431195 -0.925 0.001
STXBP5 6 147566568 147748588 -0.772 0.003
MDGA1 6 37708262 37773744 -0.765 0.012

TOB2 22 40159438 40172973 -0.572 0.032
SMARCD2 17 59263176 59274083 -0.550 0.050

TPCN1 12 112143652 112220770 -0.478 0.068
HIF3A 19 51492145 51538530 -0.464 0.096

C14orf159 14 90650164 90761456 -0.455 0.064
DIP2C 10 310130 725608 -0.452 0.009

DHDDS 1 26631360 26670384 0.439 0.080
DYNC1I2 2 172252226 172313167 0.432 0.001

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Chr.: chromosome; Coef.: coefficient; P-value∗: p-value ×10
−3

TABLE II: The top eleven ranked SNPs among a total of

691 SNPs identified by the proposed method.

RS ID Chr. Pos. Coef. P-value∗

RS11192242 10 106694535 0.263 8.073
RS4918142 10 106695763 0.263 8.073
RS2140837 10 106706765 0.263 8.073
RS16966294 17 36205020 -0.253 0.049
RS2177744 10 106703623 0.238 8.095
RS6835683 4 110633716 0.219 0.043
RS28681408 4 110641689 0.219 0.043
RS12648965 4 110631312 0.217 0.061
RS434157 5 112219541 -0.216 0.649

RS11680510 2 101577543 0.206 1.511
RS5909746 23 116086767 -0.196 0.328

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pos.: position; P-value∗: p-value ×10
−3

variables, as many studies have sought the sparse solutions

out for methodologies such as PCA, PLS, and CCA on

machine learning in order to provide easily interpretable

solutions for the models. Not only introducing the solution

of SGCCA, we also emphasize the potential power of the

method to comprehensively analyze the complex biological

systems which cooperate associatively. The proposed method

can model complex biological systems integrating existing

models and data. Combining the increasing complemen-

tary biological data and knowledge such as gene ontology,

DNA methylation, mRNA, and microRNA expressions, can

provide more accurate insights into the discovery of the

complicated biological systems.

The performance of SGCCA was assessed with simu-

Fig. 4: The model had strong relationships between SNPs,

genes, and phenotypes. The numbers above arrows show the

correlation between the blocks.

lation experiments. As a practical application we applied

the method to human brain data of psychiatric disorders.

The integrated model of GWAS and cis-eQTL, including

the multiple biological data such as genetic markers, gene

expressions, and disease phenotypes, is proposed.
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