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Abstract—In the last years attempts to develop a non-invasive
glucose system based on the glucose levels in sweat have been
studied. In this paper, 32 metal oxide semiconductor (MOS)
sensors operating at different temperatures have been used to
develop a multisensor olfactory system that allows to study
the glucose levels in sweat. In order to develop repeatable
experiments, artificial sweat at different glucose concentrations
were developed in the laboratory. The obtained results suggest
high viability of the approach. Although, the sensitivity of the
sensors system needs to be improved.

I. INTRODUCTION

According with the world health organization there are

347 million people with diabetes around the world, and the

projections for 2030 is that diabetes deaths will increase

by two thirds. A publication of the Diabetes Control and

Complications Trials report [1] shows that the number of

glucose monitorings influences the management of diabetes.

As a consequence, the number of blood measurements has

increased and the patient has to prick several times a day.

Sweat glucose (SG) levels have been previously measured

in humans [2] [3]. And in [4] a significant statistic correlation

between the SG and blood glucose (BG) levels was found.

Based on these findings, it is possible to propose a system

based on the glucose concentration in sweat to detect BG

levels.

In [5], based on the olfactory system of dogs, data shows

a clear correlation between the number of alerts that the dog

gave and the number of hypoglycemic states. However, given

that the dog training is based on routine, it is not possible to

determine if the dog is smelling the glucose level or a routine

change. On the other hand, in [6] an attempt based on the

acetone in breath, that is a marker for glucose, is used to

determine the glucose levels.

In this paper, we propose an electronic odor system to detect

glucose in human sweat based on the previous observations

that glucose is present in sweat [2] [3], there is a correlation

between SG and BG [4] and that glucose has an odor effect

[5] [6]. In our attempt, different similes of sweat at different

glucose levels are tested employing an electronic system of 32

gas sensors from Figaro Engineering Inc.

In section II and III a description of the human sweat and

the experimental setup are presented. In section IV the experi-

mentation is described. Section V presents data preprocessing.

Section VI presents the classification results, and finally in

section VII the conclusion is presented.

II. HUMAN SWEAT

The principal component of sweat is sodium chloride

(NaCl). Its mean value is around 350 mg/dL. Different to

other sweat components, lactate and urea do not present

hypoosmotic concentration with respect to the plasma. Their

concentration volumes are around 120 mg/dL and 25 mg/dL

respectively. However, the concentration could change depend-

ing on the body part where the sweat is collected [2] [7] [8].

Glucose has been reported in significant concentrations of 5

to 20 mg/dL in sweat and it is correlated with blood glucose

concentration. [4] [2] [3]. For diabetic patients the SG may

exceed 100 mg/dL but most of the research reject these last

value [2]. This discussion can be extended since the sweat

is principally the product of three different sources: secretion

of the eccrine glands, secretion of the aprocrine glands and

presumably passive diffusion of water. In this sense, sweat

composition varies in relation to the part of the body.

III. EXPERIMENTAL SETUP

A. Sensor System

A diagram of the Sensor system is shown in the figure 1.

The system is divided in two parts. The electrical part and the

chamber section. The electrical part consist of eight electronic

boards with four sensors in each of them.

Gas sensors from Figaro Engineering Inc. convert changes

in conductivity to an signal which corresponds to the gas

concentration [9]. A voltage is applied to the sensor in order

to maintain the sensing element at a specific temperature. The

ability to have different sensitivity properties is obtained by

selecting different sensors and operating temperatures.

The sensors are commercial sensors MOS that are sensitive

to various types of gases. Each board includes a voltage

regulator controlled by the user interface. The output voltage

of each sensor is fed into an amplifier.

The data acquisition, was performed using an analog to

digital converter (ADC) from national instrument (NI USB-

6218). It has 32 analog inputs, used for data collection from

the 32 sensors, and two analog outputs, one used to control

the voltage in the regulator and the other to control the

electrovalve.
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Fig. 1. Electrical design of the system and the sample chamber

The electrovalve controls the flux of air to the sensor system.

The air from the pump is split into two streams, one goes

through the sample chamber and thereafter to the electrovalve

and the other goes directly to the electrovalve. The electrovalve

is controlled automatically from an interface. The acquisition

experimental process is as follow: clean air passes through

the system to clean it during a predetermined time and then

passes through the sample chamber during another fixed time.

The setup is controlled by a dedicated graphical user interface

on a personal computer. A complete description of the whole

system can be found in [10].

B. Solutions

In order to do repeatable and controllable experiments,

we prepared two base laboratory solutions simulating the

sweat content in the thigh and torso. Table I summarizes the

composition of these solutions.

TABLE I
COMPOSITIONS OF THE BASE SOLUTIONS

Product Thigh Torso

NaCl 351 mg/dL 351 mg/dL
Lactate 123 mg/dL 104 mg/dL
Urea 29 mg/dL 23 mg/dL

The base solutions were done in volumes of 1000 mL. Each

base solution was sub-divided and glucose was added until

reach glucose concentrations of 0, 40, 70 and 100 mg/dL for

the thigh solution and, 0, 10, 15 and 20 mg/dL for the torso

solution. The glucose concentrations were chosen in order to

cover physiological and non-physiological concentrations.

The solutions were prepared using demineralized water

from a Mili-Q system, urea (at 98%), Lactate (at 85%) and

glucose (D-glucose at 99%) from Sigma-Aldrich Laboratories.

The NaCl (at 99%) comes from VWR-laboratory. The solu-

tions were prepared in a room with controlled temperature and

stored in the fridge at around 4 degrees.

IV. EXPERIMENTATION

Each solution, before doing the experiment, is acclimated

during 20 minutes in a room with controlled temperature

(24 degrees). Subsequently, the solutions are presented to the

sensor system in volumes of 20 mL. It is important to note

that the system accepts smaller volumes. It depends in the

acquisition time and evaporation rate. For our experiments,

the level of evaporation was considered not substantial.

The experimental data acquisition starts by using pure air

in order to read the state of the sensors at the environment

state. This pre-acquisition is done during 20 sec.

Once the system has read the environment state the elec-

trovalve conducts the air to the sample chamber, where the

sweat sample is located (it is done during 160 sec.) Then,

the inlet from the chamber is closed and the system read the

environment again for 40 sec. more. This process is repeated

for 30/50 different realization for each sample.

V. PREPROCESSING

In this section the data set, the answer sensor selection

procedure and the classification signal features are described.

A. Sensor Selection

For each glucose concentration 30/50 repeated measure-

ments were performed for the thigh/torso solutions. Each

experiment is composed of 32 signals corresponding to the 32

sensors of the electronic odor system. this means that in total

we have 960 and 1600 signals from thigh and torso solutions

respectively.
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Fig. 2. Sensor Response for sensors 3, 7, 19, 22 from the torso solution at
15 mg/dL

Given that the sensors have different sensitivity properties,

controlled by the operating temperature (see section Sensor

System), not all sensors respond to the glucose samples. Figure

2 shows, as an example, the answer of four different sensors.

Sensors 7 and 22 sense the changes between the pure air and

the sweat-glucose sample, while sensors 3 and 19 do not sense

any difference, or the noise level is so high that it hides the

sensors response.

It is possible to reduce the data set by choosing only the

sensors that respond to the presence of glucose. To do that, the

measurement uncertainty is estimated in the frequency domain.

So, if the standard deviation of a group of measurements is

higher than its mean value, the uncertainty is high and that
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sensor or group of sensors are discarded. Figure 3 presents

an example of the mean and the standard deviation, in the

frequency domain, for the measurements of the sensors 3 and

22. In this case, the measurements from sensor 3 are discarded

and the measurements from sensor 22 are considered for the

identification of the glucose concentration. This procedure is

repeated automatically for all data sensors and concentrations.
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Fig. 3. Mean and standard deviation response in frequency domain for sensor
3 and 22 from the torso solutions at glucose concentration of 15 mg/dL

B. Classification Features

For the analysis process, the multisensor measurements are

presented to a classification machine. However, even when

a sensor selection procedure is done (as presented in the

previous section) each signal is composed of thousands of data.

In order to reduce the number of data, a group of features that

describe completely the sensor response are chosen.

The features used by our classification system are presented

in the Figure 4. They are the transient slope, the saturation

slope and late saturation. These properties have been exten-

sively used in neural networks, PCA and olfactory systems

applications and are chosen based on their suitability for cal-

culation in hardware and the intuitively-discerned likelihood

that they might yield significant discrimination [11] [12] [13].

Employing the classification features some classification

algorithms were employed to detect the glucose concentration

in the samples. In this paper we restrict the results to the

Simple Logistic algorithm using the Waikato Environment

for Knowledge Analysis (WEKA) [14] . The system will be

evaluated using the confusion matrix. This matrix is a specific

table that allows the visualization of the performance of the

system. Each column of the matrix represents the instances in

a predicted class, while each row represents the instances in

an actual class. The name stems from the fact that it makes it

easy to see if the system is confusing two or more classes.

Based on the confusion matrix the global accuracy, the

precision and the recall of the system are calculated. The

global accuracy is the overall correctness of the model. the

precision is a measure of the accuracy provided that a specific

class has been predicted, and the recall is a measure of the

Fig. 4. Classification features

ability of a prediction model to select instances of a certain

class from a data set. Finally, in order to complement the

performance of the system, the kappa index is calculated. This

index compares the accuracy of the system to the accuracy

expected from a simple random system [15].

VI. RESULTS

In this section the classification results for each group of

data are presented. The classification of the glucose variations

presents the capability or sensitivity of the system to detect

and classify glucose concentrations, while the classification of

the base solutions (sweat solutions at 0 mg/dL of glucose) are

related to the specificity of the system.

A. Classification of Glucose Variations

The classification of the glucose variations were done for

each group separately. In the thigh sweat group the employed

glucose concentrations were 0, 40, 70 and 120 mg/dL while

the NaCl, Lactate and Urea concentrations remain constant

at the levels presented in the Table I. For the Torso group

were employed the glucose concentrations of 0, 10, 15 and

20 mg/dL, while the NaCl, Lactate and Urea concentrations

remain constant (see Table I).

1) Thigh Group: In the thigh group (glucose levels of

0, 40, 70 and 100 mg/dL) the minimum glucose variation

was 30% (30 mg/dL) of the maximun value (100 mg/dL),

and the number of repeated experiments by class was 30.

Table II presents the confusion matrix. In this case, correctly

classified instances are obtained around 70% with a moderate

to substancial kappa index (0.611).

TABLE II
CONFUSION MATRIX

Predicted Class
Known Class 0 40 70 100 Precision

0 18 3 6 3 60.0%
40 1 24 1 4 80.0%
70 6 3 20 1 66.7%
100 6 1 0 23 76.7%

Recall 58.1% 77.4% 74.1% 74.2%

Overall accuracy (OA)= 70.83%
Kappa= 0.611
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2) Torso Group: In the torso solution (glucose levels of 0,

10, 15 and 20 mg/dL) the minimum glucose variation was 25%

(5 mg/dL.) of the maximun value (20 mg/dL). The number of

repeated experiment by class was 50. Tabla III presents the

confusion matrix of the classification. For this group of data

the correctly classified instances are around 62%. In this case it

is important to note the high number of misclassification in the

extreme glucose values. 20 experiments belonging to the lower

glucose concentration (0 mg/dL) were classified in the higher

glucose group (20 mg/dL) and 23 experiments belonging to

the high glucose concentration were classified as zero glucose

content. On the other hand, adjacent glucose concentration

values were better classified presenting zero misclassification.

TABLE III
CONFUSION MATRIX

Predicted Class
Known Class 0 10 15 20 Precision

0 29 0 1 20 58%
10 0 37 13 0 74%
15 0 17 33 0 66%
20 23 0 2 25 50%

Recall 55.8% 68.5% 67.3% 55.6%

Overall accuracy (OA)= 62%
Kappa= 0.493

Even when the classification is lower than in the previous

case, the overall accuracy and the kappa index show that the

system responds to physiological levels of glucose concentra-

tion (the system is sensitive to glucose changes). On the other

hand, the misclassification results, could be given because

the concentration levels of urea (104 mg/dL) and lactate (23

mg/dl) are higher than the employed glucose concentrations

(between 10-20 mg/dL) showing a possible low specificity

of the current system configuration (sensor temperature and

operational point) to the glucose.

B. Base Solutions Classification

The base solutions represent the mean sweat composition

for the torso and thigh. These solutions differ in lactate and

urea concentrations (see Table I): 15% for lactate (19 mg/dL)

and 20% for urea (6 mg/dL). The number of developed

experiments were 30 and 50 for the thigh and torso solutions

respectively. The system is able to detect and classify the two

solutions with high accuracy. Table IV presents the confusion

matrix. The correctly classified instances were superior to 93%

supported by a high kappa index of 0.86. This result imply that

the sensor system, or the current configuration, responds to the

composition of the different sweat solutions.

VII. CONCLUSION

The results show that the electronic odor system is sensitive

to changes in glucose concentration even when the changes are

in the order of a few mg/dL. The glucose minimum variation

was 5 mg/dL. However, the accuracy of the system at that

resolution is low.

The high precision of the system classifying the base

solutions (0 mg/dL of glucose) shows the effect of the related

TABLE IV
CONFUSION MATRIX

Predicted Class
Known Class Torso Thigh Precision

Torso 50 0 100%
Thigh 5 25 83.3%

Recall 90.9% 100%

Overall accuracy (OA)= 93.75%
Kappa= 0.862

sweat components in the electronic odor system. This reveals

the need to improve the specificity of the system to glucose.

In the future, the system should be tested at different sensor

operation ranges (working temperature and voltage operational

point) in order to increase the specificity of the system to the

glucose. Furthermore, it is possible to improve the data mining

identifying new signal features.

As a conclusion, we can say, that the electronic odor

system is a promising strategy to obtain a noninvasive glucose

measurement system.
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