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Automated Localization of Cysts in Diabetic Macular Edema using
Optical Coherence Tomography Images
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Abstract— This paper presents a novel automated system that
localizes cysts in optical coherence tomography (OCT) images
of patients with diabetic macular edema (DME). First, in each
image, six sub-retinal layers are detected using an iterative
high-pass filtering approach. Next, significantly dark regions
within the retinal micro-structure are detected as candidate
cystoid regions. Each candidate cystoid region is then further
analyzed using solidity, mean and maximum pixel value of the
negative OCT image as decisive features for estimating the
area of cystoid regions. The proposed system achieves 90%
correlation between the estimated cystoid area and the manually
marked area, and a mean error of 4.6%. Finally the proposed
algorithm locates the cysts in the inner plexiform region, inner
nuclear region and outer nuclear region with an accuracy of
88%, 86% and 80%, respectively.

Index Terms: Optical coherence tomography, diabetic
macular edema, iterative segmentation, correlation coeffi-
cient, cystoid area

I. INTRODUCTION

Diabetic Macular Edema (DME) is the biggest cause of
acquired blindness due to prolonged diabetes. The World
Health Organization estimates that by the year 2020, there
will be 75 million blind people and 314 million partially
blind people in the world [1]. It is estimated that about 5%
of this populations suffer from diabetic retinopathy. The goal
of this paper is to develop a tool that can segment the OCT
images to 6 sub-retinal layers, and can locate cysts in these
layers. Such an automated cyst localization system can detect
retinal pathologies and help in prioritizing eye-care delivery.

Optical Coherence Tomography (OCT) has been widely
used to assess macular diseases, and it has enabled elaborate
characterization of the cysts that develop in the sub-retinal
layers due to DME. Studies have shown that the volume of
retinal tissue within fluid-filled spaces in the retina can be
an accurate predictor of visual acuity [2]. Further, clinical
studies based on the volume of cystoid fluid and the location
of the cysts may be used as a metric for visual prognosis.
Motivated by this, we propose an automated system to detect
cysts in OCT images from DME patients by estimating
the area and location of the cystoid regions per image.
These area estimates from adjacent OCT scans can then
be combined to obtain cystoid volumes. Additionally, the
presence of diabetic cysts may alter the normal pattern of
the sub-retinal layers leading to sub-retinal disorganization.
The extent of disorganization can be estimated using our
method of localizing these cysts in certain sub-retinal layers.
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Several prior efforts for segmentation of sub-retinal layers
have identified up to 9 sub-retinal layers in OCT images [3].
However, only one method has been reported so far for seg-
mentation of cystoid volume [2]. This method identifies the
regions of cystoid volume in 3-D stacks by bilateral filtering
followed by thresholding and boundary tracing. In [2], cyst
volume is estimated within 0-12% absolute error for OCT
image stacks from 19 patients; however, this method suffers
from under-estimation of cystic fluid volume. This drawback
introduces false negatives while estimating diabetic cysts,
which is undesired. Also, methods for detecting the location
of cysts for estimating the extent of retinal disorganization
have not yet been published.

This paper makes two key contributions. First, we present
an algorithm that estimates the area of diabetic cysts within
a certain region of interest (ROI). The correlation coefficient
of the cystoid area between automated and manually traced
area is 0.9. Additionally, our algorithm is capable of de-
termining the boundaries of contiguous cysts by breaking
down large cysts. The proposed system achieves an over
detection of cystoid area with 4.6% mean and 6.6% standard
deviation based on 120 OCT images of 25 DME patients.
The second contribution is the automated localization of
the diabetic cysts. Our algorithm segments the OCT images
into six sub-retinal layers, followed by the detection of dark
cystoid regions within the six sub-retinal layers. This enables
localization of the cysts to particular inner and outer retinal
regions. Our method achieves 100% sensitivity and 75%
specificity in separating images with no cysts from the ones
with cysts, and it achieves greater than 80% accuracy for
detecting cysts in the inner and outer sub-retinal regions.

II. PROPOSED METHOD

OCT images generally suffer from speckle noise that may
introduce false edges if not removed in the early stages of
automated processing. So far, OCT speckle denoising has
been accomplished using Wiener filtering [4] or Bayesian
least-squares estimation [5]. In this work, we rely on median
filtering [6] since it smoothens the sub-retinal layers while
retaining the fine cyst boundaries. Next, the images are
segmented to detect six sub-retinal layers by iterative high-
pass filtering. This is followed by the detection of the cystoid
regions that may appear in the sub-retinal micro-structure.

A. Problem Formulation

The green plane of each RGB image in JPEG format, that
carries the most information, is first scaled in the range [0,1].
Then, the image is denoised by median filtering followed by
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extracting a particular square region of interest where each
side is 1500 pm to generate the image Y shown in Fig. 1.
In each image Y, regions corresponding to six sub-retinal
layers (Ir) are detected by iterative high-pass filtering and
thresholding. ROI is defined as the region between the first
sub-retinal layer and the sixth layer. The area of this ROI
(A) is useful in computing the extent of disorganization for
visual prognosis.

Next, diabetic cysts are detected within the ROI as regions
that are significantly darker than the immediate neighbor-
hood. This process is further fine-tuned to improve the
sensitivity and specificity. Finally, the area (z) and location
of the automatically detected cysts as shown in Fig. 1 are
compared to the manually measured area (x) and sub-retinal
locations for analyzing the accuracy of the proposed method.

Fig. 1. OCT image with the square box corresponding to the region of
interest is highlighted (Y) and manually annotated. The proposed automated
system will segment the image into six sub-retinal layers (I/r). Area (A)
of ROI is determined between the nerve fiber layer (blue) and the pigment
epithelium (green). Finally the cysts are detected in particular sub-retinal
layers (white).

B. Image Segmentation

Once the OCT images are denoised, 6 sub-retinal layers
are segmented by iterative high-pass filtering in the spatial
domain. Several segmentation methods such as edge detec-
tion followed by segment linking or gradient search methods
are well established for automated segmentation for normal
OCT images. Most such methods fail in the presence of
sub-retinal cysts in OCT images with pathology [7] due to
false interpolation, whereas our method does not need any
interpolation, and thus detects retinal pathologies accurately.

We extract the sub-retinal layers by first estimating a mask
of the region that contains the layer (Gm), and then high-
pass filtering the image (Im) with the masked region of
interest only as described by (1). Masking the image helps
to concentrate attention to a certain region of the image at
a time, thereby segmenting a complete region (/r) in one
iteration.

Ir = HPF(Im o Gm) 1)
= Ir =ImoGm — LPF(ImoGm).

Here HPF and LPF represent the standard spatial high-
pass filtered version and low-pass filtered version of the im-

age, respectively, and o represents per-element multiplication
of matrices, or the Hadamard product.

To generate a mask for all the sub-retinal layers, the
denoised and rescaled image (Y in [0,1]) is convolved with
two double-Gaussian filters in the horizontal and vertical
direction. The root mean squared resulting image followed
by region-grow operation extracts a mask (G) for the region
containing all the six sub-retinal layers. The upper boundary
of G represents the retinal nerve fiber layer (NFL). We define
a function mask (top, bottom) that computes a mask for the
region between the pixels mentioned as the top layer (top)
and bottom layer (bottom).

Next, (1) is invoked repeatedly with Gm = G, Im =Y
and an averaging LPF to extract the region with highest
solidity and area, such that its top layer represents the
photoreceptor inner segment (PIS), while the bottom layer
is the pigment epithelium (PE) as shown in Fig. 2. Then,
the Hadamard product of Gm = mask (NFL, PIS) with
negative of the image (/m = 1—Y"), and averaging LPF' are
used to extract the region with highest area whose bottom
layer corresponds to the outer nuclear layer (ONL). This
process is repeated with Gm = mask (NFL,ONL) to
extract the inner nuclear and outer plexiform layer (INL)
similarly. Finally, Gm = mask (NFL,INL) is combined
with Im =Y and a high-pass sobel filter is used to extract
the inner plexiform layer and ganglion layer (IPL).

Fig. 2. Automated segmentation of 6 sub-retinal layers. (a) Original Image.
(b) LPF version of denoised image. (¢) HPF components detected after
first iteration. (d) Final six layers color overlaid on original image as:
NFL (Blue), IPL/GL (Cyan), INL (Red), ONL (Yellow), PIS (Magenta),
PE (Green).

The six sub-retinal layers detected so far depict boundaries
of certain regions within the retinal micro-structure with
specific visual characteristics. Further, the extent of disorga-
nization caused by diabetic cysts needs to be analyzed region
wise. Hence, localization of cystoid regions is achieved for
the inner plexiform region (IPR) between the IPL and the
INL, the inner nuclear region (INR) between the INL and
the ONL, and the outer nuclear region (ONR) between the
ONL and the PIS.

C. Cyst Detection

After each image is segmented for sub-retinal layers,
the next step is to detect diabetic cysts and fine-tune this
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detection process to eliminate instances of false positives and
false negatives. Cysts can be identified in a retinal micro
structure as regions that are significantly darker than the
immediate surrounding. Then the diabetic cysts in the IPR,
INR and ONR are found using our proposed Algorithm 1
described below.

A mask is generated between the NFL and the PIS layer
and the negative of the denoised image is globally thresh-
olded using empirically determined thresholds to extract the
possible cystoid regions (C;). Next, the regions that are
highly elliptical or that have large area are categorized as
candidate large cysts (LC) while the others are candidate
small cysts (SC). The LC regions are further enhanced in
contrast and thresholded to generate candidate broken large
cysts (BLC). Next, all BLCs and SCs are subjected to a
cyst decision Algorithm 2, where the mean and maximum
pixel value of the ONR in the negative image are compared
with the mean and maximum pixel value of the candidate
cystoid regions if the candidate cysts are in close vicinity
of the ONR. If the candidate cystoid region pixel values
significantly differ from the ONR pixel values, then the
cystoid region is a true cyst (TC), else it is discarded as
a false positive. The discriminating features for cysts, i.e.,
solidity, mean, and maximum pixel value of the negative im-
age are selected after empirical experiments were conducted
using shape and size features such as perimeter, axis lengths
etc. Empirically determined thresholds [4,¢] are chosen as
[0.91,0.05]. Thus, the area of all the TCs (&) and the location
of these TCs are determined for analyzing the performance
of the automated system compared to manual annotation.

1) Cyst Area Estimation: Our automated system detects
candidate cystoid regions, and invokes the cyst decision
algorithm to verify if a cystoid region is actually a cyst or
a false positive that is highlighted because of a significantly
dark ONR. This is depicted in Fig. 3.

2) Cyst Location Estimation: Once the six sub-retinal
layers and the TCs are detected, masks corresponding to the
IPR, INR and ONR are generated and the Hadamard product
of these masks with the image containing the TC regions
determines the location of the diabetic cysts as shown in
Fig. 4.

III. RESULTS

We evaluate our automated cyst detection system using
120 images from 25 diabetic patients with DME. These
images were acquired using the Heidelberg Spectralis imag-
ing systems such that each image is obtained by averaging
12-19 frames with a resolution of 5.88um/pixel along the
length and 3.87um/pixel along the width. The correlation
(r) between the automated true cyst area (2) and the man-
ually marked cyst area (x) is estimated by the correlation
coefficient given by (2).

. Yt (i — @) (& — &) .
VI (- w220 (6 — 40

Algorithm 1 Automated Cyst Detection (Y, NF L, P1S)
Require: G, + mask(NFL,PIS)
Require: I 5 < {enhance((1—Y)oGy)} > 0.7
Require: [mean,, maz,] < mean and maximum pixel
value of the ONR
Let C; represents all regions in I.ys:Vi = 1,2, ......
Let Small Cysts (SC)= {}, Large Cysts (LC)= {}, Broken
Large Cysts (BLC)= {}, & = 0, True Cysts (TC)= {}
Step 1: VC;
f omedorats jengii@d < 7 and area(C;) < 2000 then
SC « C;
else
end if
Step 2: VSC(j)
D(j) «+ cyst decision(SC(j), mean,, mazx,)
if D(j)=1 then
TC + SC(j)
=2+ area(SC(5))
end if
Step 3: VLC(k)
BLC(l) + {enhance((1 =Y )o LC(k))} > 0.8
Step 4: VBLC(I)
D(l) < cyst decision(BLC(l), mean,, max,)
if D(I)=1 then
TC « BLC(l)
Z =1+ area(BLC(l))
end if
return z, TC

Algorithm 2 cyst decision (S, mean,, maz,)

Require: Solidity(S) = #ﬁfﬁa(&
Require: [meang, mars] < mean and maximum pixel
value of the region in S
Let dist + shortest distance between centroid of S and
the ONL
if dist < 10 then
if Solidity(S) > ¢ then
D=1
else
if abs(meang x maxs — mean, * max,) > t then
D=1
else
D=0
end if
end if
else
D=1
end if
return D




Fig. 3. Cyst detection. (a) Candidate cystoid regions after contrast
enhancement appear brighter than the immediate neighborhood in the
negative of the image within the NFL and PIS layers. (b) True cysts detected.
(c) Actual image (d) True small cysts detected (e) Large cyst detected (f)
Broken large cysts (g)True cysts detected after cyst decision algorithm is
invoked.

‘q.‘

Fig. 4. The actual image is segmented and the region corresponding to the
true cysts are combined with the segmented regions to determine the regions
where the cysts appear. The right-most image represents the appearance of
cysts in the IPR, INR and ONR from top to bottom.

We observe r = 0.9, which signifies a high correlation
between manual and automated cyst area. Further analysis of
the automated cyst area compared to the manual annotations
is presented in Table I and illustrated in Fig. 5.

TABLE I
AUTOMATED DETECTION OF CYST AREA

Statistic i True area (%) | Detected area (%) | Abs area
Z %100 £ %100 diff (%)
Mean 0.8504 11.43 14.30 4.61
Std. dev | 0.3872 13.70 16.62 6.64

Next, automated localization of the cystoid regions as
compared to manual localization is presented in Table II.

IV. CONCLUSIONS

This paper has proposed an automated diabetic cyst lo-
calization system using OCT images of patients with DME.
The automated area of cysts detected is highly correlated

Fig. 5. Comparison of automated cyst detection system to manual
markings. (a) Original image with cystoid region manually marked (b)
Automated segmentation. Area of ROI (A) is the region between the NFL
(blue) and the PE (green) layer. (c) Automated detection of cystoid region.

TABLE I
PERFORMANCE OF AUTOMATED CYST LOCALIZATION (%)

Task SEN | SPEC | PPV NPV Acc
Separating images 100 75 91.67 100 93.33
with/without cyst

Locating cysts 91.3 83.33 | 88.73 | 86.96 | 88.03
in the IPR

Locating cysts 98.51 70.0 81.48 | 97.22 | 86.32
in the INR

Locating cysts 90.79 | 6098 | 81.18 | 78.13 | 80.34
in the ONR

with the manually marked cysts (r = 0.9) and the proposed
system over estimates cystoid area such that the mean ratio
between the actual cyst area and detected area is 0.85. Also,
our system results in a mean error of 4.6% in estimating the
percentage of the area within the region of interest occupied
by cysts as compared to existing works that report upto 12%
mean error in cystoid estimation [2]. Finally, our system
can detect cysts in the inner plexiform, inner nuclear and
outer nuclear regions with accuracy of 88%, 86% and 80%,
respectively. Future efforts will be directed towards analysis
of additional OCT image stacks and automated estimation
of the volume of cystoids from other imaging systems apart
from the Spectralis. The proposed automated system can aid
clinical studies aimed at monitoring visual prognosis and
disease progression.
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